
Journal of System Safety, March-April 2004 21

Theory and Methods for Calculating
Probability of Hazardous Events

by Vito Faraci, Jr., Greenlawn, New York

“Markov techniques give
us the ability to more
accurately calculate

solutions to non-
combinatorial problems.”

Calculating the probability of “undesirable events”
very often involves analyzing the various ways
equipment can fail. Today, Fault Tree Analysis

(FTA) is by far the most commonly used tool for qualita-
tive and quantitative risk analyses. FTA was introduced in
1962 at Bell Labs, and for about 20 years it was the de facto
standard of the engineer-
ing community.

Starting in the early
1980s, a group of NASA
mathematicians per-
formed studies that
clearly exposed some very
subtle FTA limitations. In
an effort to overcome
these limitations, NASA developed algorithms using
Markov Analysis (MA), a sub-topic of Probability, designed
not necessarily to replace but to support FTAs. With re-
spect to Reliability and Risk Assessment, the integration of
MA with FTA has been a giant step forward. Engineers can
now more accurately solve a much larger set of “Risk”
problems than they could before.

MA was introduced in 1907 by Russian mathemati-
cian A.A. Markov. It is interesting to note that although
this knowledge has been around for some time, it is only
recently that the engineering community has taken advan-
tage of this science. For example, within the past three
years, NASA has been employing Markov methods for
Probabilistic Risk Assessments for the Space Shuttle sys-
tems, and FTA and reliability software manufacturers have
integrated Markov techniques into their risk assessment
software programs.

Because of the lack of documentation written in a
clear, common language, knowledge of Markov Analysis
still remains a little sketchy within the engineering com-
munity. This article is not intended as a “how to solve” tuto-
rial, even though it will reveal some such details. Its objec-
tive is simply to raise the level of awareness of Markov
Analysis, what it is, why it is required, and what it does.

Constant Failure Rate Devices
Failure characteristic of constant failure rate devices
Assume 100 devices, all operating at time t = 0.
Probability of success  =  Ps  = e-λt

Probability of failure  =  Pf  = 1 – e-λt

where e = 2.71828, λ = constant failure rate, t = time.

Note that the percentage of device failures is the same for
each time interval. This is the telltale characteristic of a
constant failure rate.

Non-Constant Compared with Constant Failure
Rate Devices
The following is only one example of a probability of fail-
ure (Pf) of a non-constant failure rate device. In this case,
the device exhibits a “normal” distribution of failure.The Pf

of this device is a “non-integrable” function that needs to be
treated in a separate discussion involving non-constant
failure rate devices.

Figure 1 — Failure characteristic of constant failure rate
devices.
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Here, u = mean time to failure, s =
standard deviation, hl = hours previ-
ously logged, and t = time.

Unlike constant failure rate de-
vices, the probability of success for
these devices will not be constant for
equal time intervals. Furthermore, the
mathematics required for solving Pf

for these devices is more complex, as
can be deduced by comparing the
above equation with that of a constant
failure rate equation Pf  = 1 – e-λt.

The Pf   vs. Time graph in Figure
2 compares a constant failure rate de-
vice (Electrical) with a non-constant
failure rate device (Mechanical), both
having the same Mean Time Between
Failure (MBTF).

Combinatorial vs. Non-
Combinatorial Logic

Combinatorial Logic
a) Two or more input states define

one or more output states. Output
states are related by defined rules
that are independent of previous
states.

b) Logic depends solely on
combinations of inputs.

c) Time is neither modeled nor
recognized.

d) Outputs change when inputs
change, irrespective of time.

e) Output is a function of, and only
of, the present input.

Non-Combinatorial Logic (Sequential
Logic)
Logic of output(s) depends on combi-
nations of present input states, and
combinations of previous input states.
In other words, non-combinatorial
logic has memory while combinatorial
logic does not. Engineers commonly
refer to this as sequential logic.

Fault Tree Advantages:
a) Acts as a visual tool that can be

used to pinpoint system
weaknesses.

b) Exhibits clear representation of
logical processes that lead to a
system or subsystem failure (clear,
qualitative representation of
failure propagation).

c) Reveals relatively simple equa-
tions for Pf calculations yielding
quantitative analyses that do not
require high-powered math.

d) Proves to be a very effective tool
for the fault isolation process.

Fault Tree Limitations:
The following is an excerpt from
Aerospace Recommended Practices
ARP4761 Issue 1996-12:

a) Difficult to allow for transient &
intermittent faults or standby systems
with spares.
b) If a system has many failure
conditions, separate fault trees may
need to be constructed for each one.
c) Difficult to represent systems
where failure rates or repair rates are
state dependent.

The following is an excerpt from
NASA Ref. Publication 1348:

Traditionally, the reliability analysis
of a complex system has been
accomplished with combinatorial
mathematics. The standard fault-tree
method of reliability analysis is based
on such mathematics. Unfortunately,

the fault-tree approach is somewhat
limited and incapable of analyzing
systems in which reconfiguration is
possible. Basically, a fault tree can be
used to model a system with:
1. Only permanent faults (no
transient or intermittent faults)
2. No reconfiguration
3. No time or sequence failure
dependencies
4. No state-dependent behavior
(e.g., state-dependent failure rates)

Why Markov?
The following is another excerpt from
ARP4761 Issue 1996-12:

a) MA does not have these
limitations.
b) Sequence dependent events are
included and handled naturally.
c) Covers a much wider range of
system behaviors.

Close examination of the above ex-
cerpts reveals the practical answer to
the “Why Markov” question. It basi-
cally has to do with combinatorial vs.
non-combinatorial type problems.
FTA methods can only approximate
and cannot precisely calculate solu-
tions to non-combinatorial type prob-
lems. Markov techniques give us the
ability to more accurately calculate
solutions to non-combinatorial type
problems.

Figure 2 — Pf vs. Time, comparing a constant failure rate device with a non-constant
failure rate device.
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Some Pros and Cons:
Fault Tree Analysis handles combinatorial type problems
extremely well, both qualitatively and quantitatively. How-
ever, FTA has difficulty with non-combinatorial problems
in both areas.

Markov Analysis handles non-combinatorial as well as
combinatorial problems. However, it may not be quite as
intuitive as FTA, and usually requires some higher power
math for the quantitative analyses.

Introduction to Markov Analysis
If a system or component can be in one of two states (i.e.,
failed, non-failed), and if we can define the probabilities
associated with these states on a discrete or continuous
basis, the probability of being in one or the other at a fu-
ture time can be evaluated using a state-time analysis. In
reliability and availability analysis, failure probability and
the probability of being returned to an available state are
the variables of interest. The best known state-space tech-
nique is Markov Analysis.

Markov Analysis Compared with FTA
Although there is no need for Markov in solving combina-
torial type problems (FTA handles them well enough), the
next few examples will compare Markov Analysis and FTA
for the sake of illustration.

Note: For purposes of simplification, the following
comparison examples will be limited to “constant failure
rate” type problems. Solutions to “non-constant failure rate”
type problems require somewhat different techniques and
will be discussed separately.

Combinatorial Type Problems
Two Components in Series (Combinatorial):
Two black boxes start operation at the same time. Box A
has failure rate a, and Box B has failure rate b. Successful
system operation requires that both Box A and Box B be
functional. Find Pf  = Probability of System Failure.

Here, Full Up State = all devices operating, (n) = State
Number, and P(n) = Probability of State (n).

           Markov Model                         FTA Approach

Full Up

a + b
 (2)(1)

System Fail
(Box A or B Failed)

                     

x y

Pf

      Pf  = P(2) = 1 – e –(a + b) t                x = 1 – e – at  y = 1 – e – bt

                                                     Pf  =  x + y – xy  =  1 – e –(a + b) t

Note that the solutions are identical for both methods.

Three Components in Series (Combinatorial):
Three black boxes start operation at the same time. Boxes
A, B and C have failure rates a, b and c, respectively. Suc-
cessful system operation requires that all three boxes be
functional. Find Pf  =  Probability of System Failure.

            Markov Model                            FTA Approach

Full Up

a + b + c
 (2)(1)

System Fail

                       

x y z

Pf

Pf  = P(2) = 1 – e –(a + b + c) t      x = 1 – e – at  y = 1 – e – bt   z = 1 – e – ct

                                              Pf  =  x + y + z  – xy – xz – yz + xyz
                                                     = 1 – e –(a + b+ c) t

Note again the identical solutions.

Two Components in Parallel (Combinatorial):
Two black boxes start operation at the same time. Box A
has failure rate a, and Box B has failure rate b. Successful
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Example Markov State Diagram:
Represents various system states.
Transition rate is function of failure or repair rate.
States are mutually exclusive.
The sum of the probabilities must equal 1.

Figure 3 — Example Markov state diagram.
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system operation requires that Box A or Box B or both be
functional. Find Pf .

     Markov Model (2 in Parallel)

Full Up a

 (3)

(1)

System Fail
(Box A and B Failed)

 (2)

 b a

 b

 (4)

A Failed

B Failed

Pf  = P(4) = (1 – e – at )(1 – e – bt )

FTA Approach

x y

Pf

x = 1 – e – at      y = 1 – e – bt

Pf  = xy = (1 – e – at )(1 – e – bt )

Three Components in Parallel (Combinatorial)
Three black boxes start operation at the same time. Boxes
A, B and C have failure rates a, b and c, respectively. Suc-
cessful system operation requires that Box A, B or C be
functional. Find Pf.

Markov Model (3 in Parallel)

A

B

C

A,B

A,C

B,C

A,B,C

a

b

c

c

b

a

(1) (8)

(2)

(3)

(4)

b

b

(5)

(6)

c

c

a

a

(7)

Pf  = P(8) = (1 – e – at )(1 – e – bt )(1 – e – ct )

FTA Approach

x z

Pf

y

x = 1 – e – at      y = 1 – e – bt     z = 1 – e – ct

Pf  =  xyz  = (1 – e – at )(1 – e – bt )(1 – e – ct )

Again, the results are identical for this combinatorial type
problem.

Fault-Tolerant Diode Circuit, Probability of Short Circuit
(Combinatorial):
The diode circuit below is a model of a fault-tolerant diode
configuration. The two possible failure modes for a diode
are a SHORT circuit or an OPEN circuit. The failure rate
for the SHORT mode (assuming identical diodes) is l. De-
rive the equation for the probability of a “Short Circuit.”

Let a, b, c and d = failure rates of failure mode
SHORT for diodes A, B, C and D, respectively.

Diode Circuit

A B

C D

Markov Model

A
Short

Short
Circuit

a

b

d

c

c

b

a

Full
Up

C
Short

A,C
Short

A,D
Short

D
Short

B
Short

B,C
Short

B,D
Short

d

c

b

a
d

d
c
a

b

b+d

b+c

a+d

a+c

If A = B = C = D = (1 – e–λt) then PShort = 1 – [1 – (1 – e–λt)2]2.

FTA Approach

A B C D

PShort = 1 – [1 – (1 – e – λt)2]2
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Note that Markov and FTA results are the same, since this
is a combinatorial problem.

Fault-Tolerant Diode Circuit, Probability of Open Circuit
(Combinatorial):
The diode circuit below is a model of a fault-tolerant diode
configuration. The two possible failure modes for a diode
are a SHORT circuit or an OPEN circuit. The failure rate
for the SHORT mode (assuming identical diodes) is l. De-
rive the equation for the probability of a “Short Circuit.”

Let a, b, c and d = failure rates of failure mode OPEN
for diodes A, B, C and D, respectively.

Diode Circuit

A B

C D

Markov Model (Diode Open)

a+b

 (3)

(1)

 (2)

c+d a+b

 c+d

 (4)

Open
Circuit

A or B Open

C or D Open

If A = B = C = D = (1 – e-λt) then POpen = (1 – e–2λt)2.

FTA Approach

A B C D

POpen = (1 – e – 2λt)2

Note that Markov and FTA results are the same, since this
is a combinatorial problem.

Fault-Tolerant Diode Circuit, Probability of Short Circuit
(Combinatorial):
The diode circuit below is a model of a fault-tolerant diode
configuration. The two possible failure modes for a diode
are a SHORT circuit or an OPEN circuit. The failure rate
for the SHORT mode (assuming identical diodes) is l. De-
rive the equation for the probability of a “Short Circuit.”

Let a, b, c and d = failure rates of failure mode
SHORT for diodes A, B, C and D, respectively.

Diode Circuit

A B

C D

Markov Model (Diode Short)

A
Short

Short
Circuit

a

b

d

c

c

b

a

Full
Up

C
Short

A,C
Short

A,D
Short

D
Short

B
Short

B,C
Short

B,D
Short

d

c

b

a
d

d
c
a

b

b+d

b+c

a+d

a+c

If A = B = C = D = (1 – e–λt) then PShort = 1 – [1 – (1 – e–λt)2]2.

FTA Approach

A B C D

PShort = 1 – [1 – (1 – e – λt)2]2
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Note that Markov and FTA results are the same, since this
is a combinatorial problem.

Non-Combinatorial Type Problems
Solutions to non-combinatorial problems require tech-
niques other than traditional combinatorial logic such as
that found in FTAs. One non-combinatorial type problem
that has intrigued mathematicians for quite some time is
the classic “Standby Problem.”

Note: For purposes of simplification, the following
comparison examples will be limited to “constant failure
rate” type problems. Solutions to “non-constant failure rate”
type problems require somewhat different techniques, and
thus require a separate discussion.

Two Components Standby Redundant (Non-
Combinatorial):
Box A has failure rate a, and Box B has failure rate b. Box A
is powered on while Box B remains off. Immediately upon
detection of Box A failure, Box B is powered on. Calculate
the probability that both boxes fail.

Markov Model (Standby)

No Fails

a
 (2)(1)

1 Unit Failed

(3)

Both Failed

b

1)bt(
a

)at(
b

=P(3) +–––
ba – ba –

e e

FTA Approach

x y

Pf

1/2

x = 1 – e – at      y = 1 – e – bt

 Pf  =  λxy =  λ (1 – e – at )(1 – e – bt )

This problem is another example of sequence failure de-
pendency, and therefore a non-combinatorial type prob-
lem. Note again that the FTA results are having difficulty
tracking the Markov solution. For the first 10 hours, the
solutions are almost identical, as shown in Figure 4. How-
ever, as shown in Figure 5, the FTA error becomes quite
apparent as t gets large.

In this example, the MA results are larger than FTA.
However, it is important to note that this is not always the
case. In other problems, FTA results will exceed MA. In
other words, the results can go either way.

Two Components in Parallel with Required Order Factor
(ROF) (Non-Combinatorial):
a. What is the probability that both boxes fail and that A

fails before B?
b. What is the probability that both boxes fail and that B

fails before A?

Example

2 in Series

3 in Parallel

Pf  Solution               Equivalent Pf

with A = e     , B = e      , C = e– at – bt

3 in Series

2 in Parallel

1 – ABC

1 – A – B + AB

– ct

Diode Short

Diode Open

1– e – (a+b+c)t

1– e – (a+b)t

(1 – e     )(1 – e      )– at – bt

– at(1 – e     )(1 – e      )(1 – e     )– bt – ct

1 – [1 – (1 – e     )  ]– at  2  2

(1 – e      )–2at  2

1 – AB

1 – (A+B+C) + (AB+AC+BC) – ABC

1 – [1 – (1 – A)  ]2  2

(1 – A  )2  2

Table 1 — Combinatorial
Problem Summary Chart

Note: Each of these solutions
can be expressed in terms of
integral sums and products of
their respective probabilities of
successes or failures. In other
words, coefficients and expo-
nents of terms in column 3 will
all be integers. This is a telltale
characteristic of all combinato-
rial type problems.
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Markov Model (ROF)

(4)(2)

A
fail

B
fail

A,B
fail

B,A
fail

(1) a

b

b

a

FU

(3) (5)

a. P(4) = a/(a + b) + [b/(a + b)] e – (a + b) t  – e – bt

      b. P(5)  = b/(a + b) + [a/(a + b)] e – (a + b) t  – e – at

                 FTA Approach

x y

Pf

1/2

x = 1 – e – at      y = 1 – e – bt

a. Pf  =  λxy =  λ (1 – e – at )(1 – e – bt )
b. Pf  =  λxy =  λ (1 – e – at )(1 – e – bt )

Recall Item 3 of the NASA excerpt.
This ROF problem has a sequence
failure dependency, and is conse-
quently a non-combinatorial type
problem. As one can observe, the
above results are not the same. This is
because FTA has difficulty handling
such problems.

Figures 6 and 7 show the FTA
error.

One Component with Repair (Non-
Combinatorial):
A black box has failure rate a and an
average repair rate b. Immediately
upon detection of a failure, the box
goes into a repair process and is put
back on line. Calculate the probabili-
ties of States 1 and 2.

Notes:
1. “Repair” can be categorized as an
intermittent type problem. The device
works, then it doesn’t, then it works
again. Recall Item 3 of the NASA
excerpt. Hence, this is another
example of a non-combinatorial
problem.
2. Markov has the capability of
solving this problem on a continuous
basis, as shown in Figure 8.

Markov Model (Repair)

FU Fail

(1) (2)
a

b

Figure 5 — Standby Markov, FTA Comparison (0 to 5000 hours).

1 Active, 1 Standby [a = .001, b = .001]

Y1 = 1+(b/(a+b))*e^-(a*t)-(a/(a-b))*e^-(b*t)   Y2 = (1-e^-(a*t))*(1-e^-(b*t))/2
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Figure 4 — Standby Markov, FTA Comparison (0 to 10 hours).
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ab
=P(1)

ba + ba +
+ )

(a+b)t
( –e

aa
=P(2)

ba + ba +
– )

(a+b)t
( –e

Note from the above equation that when t gets large, P(1)
approaches the value b/(a+b) which is commonly known
as “Availability.”

Load Sharing (Non-Combinatorial):
Consider a parallel load-sharing system consisting of two
components A and B. Under the load-sharing conditions, each
component carries one-half of the load. If under half-load
conditions, the failure rate for each component is one-third
of the full load failure rate. The full-load component failure
rate is a.

Markov Model (Load Sharing)

a/3

 (3)

(1)

 (2)

a/3 a

 a

 (4)

System Fail
(A and B Failed)

A Failed

Full Up

B Failed

P(3) = 2e–at – 3e–(2a/3)t + 1

Equivalent Markov Model

No Fails

2a/3
 (2)(1)

1 Unit Failed

(3)

Both Failed

a

This is a very interesting problem. At
first glance, this problem appears to
be combinatorial since its Markov
Model above looks very much like
the model of two components in
parallel. Construction of an equiva-
lent model reveals that it is non-
combinatorial since this model now
looks like that of two components in
standby redundant. This equivalent
model reveals that this system has a
state-dependent failure rate, and as a
result, is actually a non-combinatorial
type problem.

General Solution for n > 1 and n ≠ 2:
If the above problem had read,“If
under half-load conditions, the fail-
ure rate for each device is 1/n times
the full load failure rate,” the solution
would be:

1
at( 2

=P(3) +––
2n–

e) –(2a/n)t2

2n–
e)(

Figure 6 — ROF Markov, FTA Comparison (0 to 10 hours).
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Figure 7 — ROF Markov, FTA Comparison (0 to 1000 hours).
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General Solution for n = 2

a2t2e–at

2
=P(3)

Function Failure Undetected (Non-Combinatorial):
A certain system incorporates Built-In-Test (BIT), which
detects 90% of function failures of an electrical device. The
function has failure rate f, and BIT has failure rate b. As-
suming the function and BIT are checked during preflight,
what is the probability of the function
failing undetected?

   Markov Model (Undetected)

b

(1)

 (2)

0.1f

 0.9f

Undetected
Function
Failure

BIT Failed

Full Up

 (3)

 FTA Approach

x y

Pf

1/2

z

Markov Solution:
Pf = 1 – (.8f/(.8f–b))e–(.1f+b)t + (b/(.8f –
b))e-.9ft

FTA Solution:
x = Prob (Function fails undetected) =
0.1 x f x t
y = Prob (Function fails detected) =
0.9 x f x t
z = Prob (BIT fails) = b x t where t is
the elapsed time measured with pre-
flight being start of count.
Pf = x +yz/2 – xyz/2  =  x + yz(1–x)/2
=> Pf = 1 – [e–.1ft + e–ft + e–(.1f+b)t –
e–(f+b)t]/2

Additional Notes
1. There is absolutely no relationship between logic

(combinatorial or non-combinatorial) of the
interconnections of components within a system and
the failures rates (constant or non-constant) of the
components. When calculating probability of system
failure, the analyst must account for both the failure
characteristics of each component, and the
interconnect logic.

Figure 8 — Theory and Methods for Calculating Probability of Hazardous Events.

Device with Repair [a = .001, b = .001]

Y1 = a/(a+b)–[a/(a+b)]*e^–[(a+b)*t]       Y2 = b/(a+b)+[a/(a+b)]*e^–[(a+b)*t]
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Figure 9 — Undetected Markov vs. FTA (0 to 100 hours).
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2. FTA methods can handle both constant and non-
constant failure rate components. Its limitation lies in
the handling of non-combinatorial logic.

3. Markov handles both constant and non-constant failure
rate components, as well as both types of logic.

4. It is interesting to note that Markov has many other
applications. For example, Markov is used in statistics,
speech analysis and recognition, data compression
techniques, population analysis, biology, tele-
communications, chemical reaction analysis, and
financial mathematics, just to name a few.

Conclusions
In the world of Risk Analyses (calculating probability of
failure), there are problems that, by nature, are non-
combinatorial as well as combinatorial. Although in the
early days of FTA, the existence (or differentiation) of
these types of problems was a little obscure, engineers today
are taking a closer look.

Markov methods may or may not be required for a
failure analysis. What is important is that the analyst have
the capability to make intelligent decisions as to whether
the analysis requires Markov or not. Analysts should have

the tools to solve both combinato-
rial and non-combinatorial type
problems both qualitatively and
quantitatively.

Since FTA is easy to under-
stand, very well known, and
handles combinatorial problems
very well, the analyst should con-
tinue to use FTA whenever deal-
ing with combinatorial types. It is
suggested that MA not be used as
a substitute for FTA, but rather as
a supplement whenever non-
combinatorial type problems are
encountered.
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Table 2 — Non-Combinatorial Problem Summary Chart (Selected Examples).

Figure 10 — Undetected Markov vs. FTA (0 to 1000 hours).
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Y2 = 1–[e^–(.1*f*t)+e^–(f*t)+e^–(.1*f*t+b*t)–e^–(f*t+b*t)]/2
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Note: Solutions to non-combinatorial problems cannot be expressed in terms of
integral sums, products and exponents of their respective probabilities of successes or
failures. Notice that in column 3, the coefficients and exponents of terms are not all
integers. This is the telltale characteristic of non-combinatorial type problems.
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