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Abstract

This paper describes part of a multi-year effort in prognosis and health 
monitoring (PHM) at the University of Maryland, College Park. The 
objective of this PHM effort is to develop a Bayesian framework 
based on mechanistic failure models and non-destructive inspection 
data to estimate airframe reliability and risks, and to support fl eet 
management of aging aircraft. The ultimate goal is to develop an 
integrated probabilistic framework for utilizing all available infor-
mation to better predict (with less uncertainty) risks and structural 
health of the aircraft. Such information includes fatigue models and 
test data, health monitoring measurements and inspection fi eld data. 
Despite signifi cant achievements in the modeling of crack growth 
behavior using fracture mechanics, it is still of great interest to fi nd 

practical techniques for monitoring the crack growth instances using 
non-destructive inspections and to integrate such inspection results 
with the fracture mechanics models. In the work presented in this 
paper, a probabilistic damage-tolerance model based on acoustic 
emission (AE) monitoring is proposed to enhance the reliability and 
risk prediction for structures subject to fatigue cracking. 

Introduction

Authors have previously proposed a probabilistic model (Wang et 
al., 2009) to assess the reliability of aging airframes by predicting 
the probability that a fatigue-induced crack will reach a length that 
poses unacceptable risk after specifi ed future fl ight hours. They 
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have also shown (Wang et al., 2008) that using prediction models 
alone cannot assure the safety of a mission. The next step towards 
enhancing the quality of risk predictions is to use non-destructive 
inspection (NDI) to monitor the crack growth in the structure and to 
supplement the mechanistic fatigue model predictions by this extra 
information. 

Over the past 30 years, acoustic emission technology has been devel-
oped as a promising and effective NDI technique capable of detect-
ing, locating and monitoring fatigue cracks in a variety of composite 
and metal structures such as airframes (Boller, 2001). Acoustic emis-
sions are elastic stress waves generated by a rapid release of energy 
from localized sources within a material under stress (Mix, 2005). 
Such emissions often originate from defect related sources such as 
permanent microscopic deformations within material and fatigue 
crack extension.

In this paper we propose a method to use AE monitoring, instead of 
complex procedures and calculations, to determine the stress inten-
sity range DK in fatigue crack propagation. The value of DK depends 
on the geometry, stress amplitude and the instantaneous crack size. 
For a given geometry, a large DK represents either a large crack size 
and/or a high stress amplitude range applied to the structure. Stress 
intensity is a parameter that can be considered an aggregate driving 
force for fatigue crack growth. Fracture toughness KIC on the other 
hand can be thought of as a measure of a material’s resistance to 
stable crack propagation under cyclic loading (Anderson, 1994). The 
crack growth is stable as long as the stress intensity is less than the 
fracture toughness of the material.

To use AE monitoring for quantitative prognosis and health assess-
ment, we define a risk factor based on the probability that the 
maximum stress intensity Kmax estimated from AE signals, exceeds 
KIC of the material. 

In the following sections, first a brief overview of the experimental 
setup and procedure is given. Next, the correlation between AE 
signals and DK is established and a Bayesian regression approach 
is used to find the probability density function (PDF) of Kmax and 
consequently calculate RAE as a function of AE parameters.

Acoustic Emission Response During 
Fatigue Crack Growth

Several investigators have studied the connection between fatigue 
crack growth behavior and the resulting acoustic emissions (Hamel 
et al., 1981; Bassim et al., 1994). Certain features of acoustic emission 
signals are found to be stochastically correlated with key fatigue 
parameters such as DK and crack growth rate. For instance, AE 
counts c which is the number of times that the AE signal amplitude 
exceeds a certain threshold value, and its derivative, count rate dc/
dN, are two of the most commonly used AE parameters in fatigue.  
(Bassim et al., 1994) have shown that the AE count rate and DK have 
a power relationship as follows:

    

dc
dN

= B'ΔKα ' (1)

where c denotes the AE count, DK is the stress intensity range and  
B' and   α'  are model parameters which mainly depend on material 
properties and environment, and should be estimated experimen-
tally. Our goal is to estimate DK using AE observations; therefore we 
use the inverse of Eq. (2) as follows:
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where     B = ʹ B − 1 ʹ α  and     α =1 ʹ α . The linear form of Eq. (2) yields:
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where b = ln B and will be estimated along with parameter a using 
the experimental results.

The significance of Eq. (1) is that once the model parameters are 
determined, one can use this equation to estimate DK by monitoring 
the acoustic emissions and extracting the AE count rate from the 
observed signals.

In order to verify the relationship proposed in Eq. (1) and to estimate 
its parameters we carried out experiments in which fatigue crack 
growth in a metallic specimen was monitored while the generated 
acoustic emission signals were captured for further analysis. Mate-
rial properties and some of the geometrical features (e.g. thickness 
of the specimen) were selected similar to those of the real airframe. 
The tests were carried out on standard compact tension (CT) speci-
men (ASTM E647-08, 2008) made of 7075-T6 aluminum alloy (W=2.5 
inch, B=0.125 inch) using a 5 kip MTS machine. The specimen was 
first fatigue pre-cracked using sinusoidal loading with a min-max 
loading ratio R=0.1 and a frequency of 30 Hz until fatigue crack of 
adequate length and straightness in accordance with ASTM E647 
was detected. The main fatigue test was performed at a frequency 
of 10 Hz using the same R ratio of 0.1. The applied load range was 
determined according to the material properties and geometry of 
the test specimen and remained fixed throughout the test. Macro 
digital photography was used for crack size measurement; high 
resolution pictures of the specimen (with a scribed scale attached 
to it) were automatically taken using time-lapse photography tech-
niques. The pictures were post-processed using the Image Process-
ing Toolbox in MATLAB to identify the crack tip. The crack length 
was then measured with an accuracy of 0.01 inch.

A PCI-2 AE monitoring system supplied by Physical Acoustic Corpo-
rations was used to capture the AE signals. A wideband (WB) sensor 
was clamped on the specimen with silicon grease used as a coupling 
agent. AE signals were first amplified using a 40 dB differential 
amplifier. A 200 kHz high pass filter was used to filter out the extra-
neous noise mostly from the MTS machine.  Signals with amplitudes 
exceeding a threshold of 45 dB were transferred to a computer for 
feature extraction. Several AE features were calculated by the system 
and recorded for further analysis. Time domain features included hit 
time, counts, amplitude, duration, absolute energy and load level. 
Frequency domain features included peak frequency and frequency 
centroid (a measure of average frequency) of the signals. Fatigue 
crack growth data (applied load history, crack size a and number of 
elapsed cycles N) were recorded as well. Fatigue data and AE were 
synchronized on a single PC to facilitate further analysis.
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Figure 1: Typical AE signal due to crack growth

Figure 1 shows a typical AE signal generated during fatigue crack 
growth.

Signals received during AE testing are often buried in noise from 
numerous sources such as surface rubbing at loading pins, noise 
from the hydraulic loading actuators, internal rubbing of crack 
surfaces, etc. Researchers (Berkovits and Fang, 1995; Fang and 
Berkovits, 1993) have proposed different de-noising techniques to 
overcome this shortcoming. 

The majority of investigators including the authors of this paper 
suspect that only events occurring near the maximum load in a cycle 
are associated directly with crack extension (Roberts and Talebzadeh, 
2003). In the present study, we found that the events (i.e., AE hits) 
occurring within the top 30% of the peak load have a good correlation 
with DK and consequently the crack growth rate. The second crite-
rion used for AE filtration was that the events occurring during the 
loading portion of a cycle are more likely to be due to crack extension 
versus those occurring during the unloading part. Figure 2 shows the 
log-linear correlation between DK and the AE count rate, once proper 
filtration is performed so that the AE signals generated from crack 
extension are separated from the noise. This result is in good agree-
ment with the linear model proposed in Eq. (3).

Figure 3 shows the AE count rate and the crack growth rate on the 
same plot. It is notable how both rates increase with a similar slope 
when plotted on a log-log scale against DK. This suggests that by 
monitoring the AE count rate, one can describe the crack growth 
behavior without directly measuring the actual crack size or its rate 
of growth.

Figure 2: Correlation between AE count rate and DK after filtration

 

Figure 3: Strong linear correlation between the stress intensity range 
and both AE count rate and crack growth rate

Bayesian Parameter Estimation

In this section, a Bayesian regression technique is used to estimate 
the parameters a and b of Eq. (3) including their uncertainties. 
Rather than relying solely on the best estimate of the parameters 
and the corresponding confidence intervals, as is the common 
practice when using maximum likelihood estimation (MLE) and 
traditional regression techniques, Bayesian estimation provides a 
reasonable coverage of the uncertainties by calculating the joint PDF 
of the model parameters (See Figure 4). Another advantage of the 
Bayesian approach is that it preserves the available information in 
the scatter of the data in the form of posterior probability distribu-
tions for the model parameters. 
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Figure 4: Bayesian Inference Framework (Azarkhail and Modarres, 
2007)

In addition, the Bayesian inference technique provides a framework 
for incorporating additional sources of knowledge that may 
be available about the parameters. Possible sources of such 
information include similar past experiments, handbook data 
and expert judgment. See (Azarkhail and Modarres, 2007) for 
more information on using the Bayesian regression technique for 
uncertainty characterization. 

In the Bayesian approach to regression, the fitness concept is rep-
resented in the probability of occurrence or likelihood form where 
a larger value of the likelihood function shows a better model fit 
to the data. An alternative way to define the likelihood function is 
to use the distribution of “model error”. Here error is defined as 
the difference between the model prediction and the observed data 
and can be treated as a random variable. It is assumed that for the 
best fitted model, the error is normally distributed with mean zero 
and unknown standard deviation s. This is equivalent to assuming 
that the dependent variable is normally distributed with its mean 
defined by the model prediction and with standard deviation s. Here 
we define the likelihood function by assuming that the dependent 
variable in DK is normally distributed according to Eq. (4). 

    lnΔK ~ Ν μ,σ( )    (4)

where m = b + a ln(dc/dN) is the mean of the normal PDF, which 
is calculated based on the linear relationship in Eq. (3). Also, s is 
the standard deviation, which is an unknown parameter to be esti-
mated along with a  and b. The conditional likelihood function can 
then be formally defined as follows:
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Bayesian inference starts with an uncertain and subjective belief about 
the model parameters. This belief is systematically updated using 
the likelihood function (Eq. (5)) and in light of the available data (i.e. 
ordered pairs of (ln DKi, ln (dc/dN)i ). In this study, we started with 
no past experience, and therefore no prior information about the dis-
tribution of parameters was available. This is reflected in our choice 
of non-informative (uniform) prior distributions for parameters a, b 
and s. If additional information such as similar test results or prior 
estimates of the model parameters becomes available, an informative 
prior distribution can be used instead. This will affect the posterior 
distribution of parameters accordingly. Notice that when uniform 

priors are used for the parameters, the Bayesian and MLE approach 
will both result in the same best estimate for the parameters but the 
coverage of the uncertainty over the parameters could be different. 
Uncertainty bounds in MLE are estimated using a Fisher information 
matrix with an underlying normality assumption for the parameters 
whereas in the Bayesian approach, the uncertainty bounds are derived 
using the posterior joint distribution of parameters.  Figures 5 and 6 
show the Bayesian regression results in the form of the marginal and 
joint posterior distribution of model parameters, respectively.

Figure 5: Marginal posterior PDF of model parameters

Figure 6: Posterior joint PDF of a and b

In a Bayesian framework, prediction at a given value of the inde-
pendent variable is based on the predictive distribution, that is, the 
likelihood of the future data averaged over the posterior distribu-
tion of parameters as illustrated in Eq. (6).

    
f ΔK | dc
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where p(q) represents the posterior distribution and q = {a,b,s} is 
the vector of model parameters.
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For complex likelihood functions with a large number of parame-
ters it may be very difficult and sometimes impossible to solve these 
equations analytically. Therefore, in practice, numerical approaches 
such as Monte Carlo based methods are used to calculate these 
multidimensional integrals. In this approach, the characteristics of 
distributions are estimated by generating a sufficient number of sta-
tistical samples from them. Here we use samples from the posterior 
joint distribution of model parameters along with Eq. (3) to estimate 
the distribution of DK for a given value of dc/dN. Once DK is esti-
mated, the maximum stress intensity Kmax 

= DK/(1-R) can be easily 
calculated for a given loading ratio R.

Probabilistic Reliability Model

As the final step to develop an AE-based prognosis and health 
monitoring approach, we define an instantaneous risk factor RAE 
based on the conditional distribution of Kmax and the value of frac-
ture toughness KIC . RAE is defined in Eq. (7) as the probability that 
the maximum stress intensity exceeds the fracture toughness of the 
material that results in unstable crack growth and ultimately failure.

RAE =  Pr(Kmax >  KIC) =  1- FKmax(KIC)  (7)

where FKmax
 is the Cumulative Density Function (CDF) of Kmax.

RAE could also be thought of as the probability of transitioning from 
stage II to stage III of fatigue crack growth regime. This transition 
probability is calculated at any given point in time, based on the AE 
inspection results.

Figure 7: PDF of Kmax as the AE count rate increases (bottom), 
Increasing trend in risk factor (top)

Figure 7 shows the conditional PDF of Kmax, estimated from the AE 
data in Figure 2. Notice how this distribution shifts to the right as 
the AE count rate increases. This figure also illustrates the increasing 
trend in RAE as the AE count rate and Kmax increase throughout the 
experiment. By monitoring the acoustic emissions from a structure, 
the proposed approach enables us to estimate, at a given point in 

time, the probability that the crack growth transitions to the unsta-
ble regime and ultimately leads to failure.

Here a deterministic KIC value is assumed for simplicity but if addi-
tional data about the statistical distribution of KIC becomes available, 
the methodology presented here can be used to calculate the risk 
factor accordingly.

Once the transition probability is calculated, a decision-maker will 
be able to compare it with a threshold value set according to the 
tolerable risk in the system and use this information as a guideline 
for assessing the structural safety of the aircraft.

Summary

A damage-tolerance reliability model for structural health monitor-
ing was presented in this paper. Experiments were carried out to 
use AE inspection to estimate the stress intensity range  ΔK during 
fatigue crack propagation in a standard CT specimen. Acoustic emis-
sion signals were properly filtered and features relevant to fatigue 
crack growth were extracted. The linear model proposed in the 
literature for ln(DK) versus ln(dc/dN) was confirmed using experi-
mental data. Bayesian regression was used to estimate the marginal 
and joint probability distributions of the model parameters. Next, 
the conditional PDF of DK given the AE count rate was calculated. 
Finally, a risk factor RAE was defined based on the probability that 
Kmax exceeds the fracture toughness of the material KIC given the AE 
inspection results. There is room for several improvements in this 
study. The approach proposed here is also applicable to the case of 
random amplitude loading when revised to account for the variabil-
ity in the applied loading. Also, AE filtration and feature extraction 
can be done in a more sophisticated manner by wavelet analysis 
and by taking into account more time and frequency domain AE 
parameters. 
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Nomenclature

DK      stress intensity range
Kmax      maximum stress intensity
KIC      fracture toughness
dc/dN     acoustic emission count rate
RAE      risk factor based on acoustic emission
a,b,s     model parameters
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Total Cost of Ownership (TCO) gained popularity with electronics 
manufacturers in the early 1990’s when many industries, especially 
semiconductor equipment users, wanted to recognize that the 
procurement decision encompassed much more than the initial 
acquisition (purchase) cost.  Indeed, if you consider costs associated 
with owning and operating the asset over its entire useful life, it 
is common for operational costs to considerably exceed acquisition 
costs.

This article introduces a TCO model that has been developed by 
Agilent Technologies.  A key component of the TCO model is the 
notion of downtime mitigation.  By way of example, the article 
shows how availability analysis can be used to improve system 
uptime and reduce the cost to own and operate the equipment.

Total Cost of Ownership Modeling

TCO is defi ned to be the total cost to own and operate a piece of 

U S I N G  AVA I L A B I L I T Y  A N A LYS I S  TO  R E D U C E  TOTA L  CO S T  O F  O W N E R S H I P

Bill Lycette, Agilent Technologies

equipment over its useful life.  Agilent Technologies has devel-
oped a TCO model comprised of the two core elements of capital 
expenses (acquisition costs) and operating expenses that describe 
these costs at a high level.  Modeling of capital expenses is fairly 
straightforward with depreciation schedules being the principle 
area of variation.  Capital expenses generally are costs (Cacq) incurred 
to acquire and install the equipment.  Operating expenses provide 
an area for much greater latitude in terms of what is included in 
the TCO model and how the cost components are represented.  The 
TCO model presented in this article structures operating expenses 
in the following manner:

› Preventive Maintenance – Cpm

› Corrective Maintenance – Ccm

› Downtime Mitigation – Cdm

› Technology Refresh – Ctr

› Training & Education – Cte

› Resale value or disposal cost – Crv

› Other – Co
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Figure 1.  Capital Expenses and Operating Expenses represented in 
the TCO model.

The Total Cost of Ownership equation is given by:

TCO = Cacq + Cpm + Ccm + Cdm + Ctr + Cte + Crv + Co

Agilent Technologies is a leader in the electronic Test & Measure-
ment industry.  Typically calibration of the equipment is the single 
largest cost component of preventive maintenance expenses.  In this 
regard, calibration cycle period is the single largest lever to pull on 
to reduce such metrology costs.  Other important variables beyond 
just the cost to perform a calibration include cal turnaround time 
(TAT), logistical costs and any “repair” costs required to adjust the 
product back into calibration.  Preventive maintenance costs would 
also include other periodically scheduled actions such as proactive 
replacement of subassemblies that tend to exhibit wear out phe-
nomena.  

Corrective maintenance generally refers to unplanned downing 
events such as equipment failure.  For the purposes of this TCO 
model, corrective maintenance costs are represented by the cost to 
perform the repair, re-calibrate after the repair, logistics to remove, 
ship and re-install, and performance verification of the equipment.  
The cost to perform the repair can be represented by either a con-
tracted repair agreement or, if the owner wishes, to “self-insure” on 
a Per Incident (P.I.) basis.  Annual P.I. repair expenses are modeled 
as the expected annual value calculated by multiplying the P.I. cost 
times the probability of failure occurring in a one year period.  While 
at first glance it may appear that a P.I. strategy is the lower cost 
option, one must also consider that a repair contract usually results 
in a lower repair TAT and therefore lower downtime.  A downtime 
cost penalty must be applied to recognize the fact that the equip-
ment was unavailable for use by the owner.  This is accomplished by 
applying a cost driver variable, such as a weekly rental rate proxy, to 
the cost equation such that:

Cost of Unavailability = (purchase price) x (rental rate proxy) x 
(repair TAT)

Weekly rental rates for performance measurement equipment typi-
cally run in the range of 2-5% of the purchase price.

The consequences of unplanned corrective maintenance events such 
as equipment failure can be extremely costly, even disastrous, for 
the enterprise.  For instance, if a test system goes down in a volume 
manufacturing environment or in a critical R&D application, the 

impact can be lost sales and missed business opportunities that 
may cost the enterprise millions of dollars.  Because of difficul-
ties in quantifying and predicting the outcome of such events, the 
TCO model does not place this aspect of the cost element under 
the heading of corrective maintenance.  Instead, these sort of “cata-
strophic” costs are addressed through cost avoidance measures 
and strategies described in the Downtime Mitigation section that 
follows later in this article.

Technology Refresh (sometimes termed Product Migration) refers 
to situations where equipment owners wish to upgrade their assets 
to products with increased levels of measurement capability or 
increased levels of measurement speed.  Typically the largest com-
ponent of product migration costs is the investment required by 
equipment owners to ensure backward/forward compatibility of 
the new piece of equipment in their test process.  Costs associated 
with developing/editing test code to ensure compatibility in the test 
process can be quite high.  These are one-time expenses that should 
be amortized over the installed base of equipment that derive the 
benefit.

At the end of the equipment’s useful life, the asset is disposed of 
either by selling, trading in for credit, or having the equipment 
recycled.  The first two options are treated as a negative cost in the 
TCO model.  High resale value becomes a strategic advantage for 
suppliers of superior quality products when one looks at the TCO 
algorithm.

Other TCO costs that a business may wish to incorporate into the 
calculation include energy, floor space and consumable materials.

Next, we turn our attention to a critical TCO component the author 
refers to as Downtime Mitigation.  This is an area in which reliability 
and quality professionals play a crucial role.

Downtime Mitigation

As mentioned earlier, unplanned downing events (failures) are 
probabilistic in nature with the potential for catastrophically high 
costs to the business.  This makes it difficult to attach a cost estimate 
that is both accurate and believable.  A better approach is to develop 
and implement operational strategies that mitigate (or eliminate) 
the effects of unplanned downing events.  Engineering and man-
agement have a number of downtime mitigation strategies to select 
from, including:

1) High Reliability
 › Select a product that offers leading edge reliability.

2) Low Repair TAT
 › Select a return-to-depot service provider that offers 
lowest possible repair TAT.

 › Perform on-site repair, either by contracting with 
a service provider or by developing the capability 
internally.

 › Purchase extended warranty service contracts to reduce 
or eliminate logistical, administrative and procurement 
delays.
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3) Capacity
 › Purchase extra manufacturing test capacity and hold in 
reserve.

 › Purchase spare equipment.
 › For self-maintainers, purchase spare parts.

The approach suggested in this article is to develop and implement 
a downtime mitigation strategy that enables the business to deliver 
on its commitments to customers while minimizing TCO.  One way 
to evaluate these strategies is to conduct Availability analyses and 
select the option that strikes an optimum balance between maximiz-
ing system Availability (i.e. minimizing downtime), minimizing costs 
to implement the strategy, and minimizing ongoing operating costs.

Some factors at work in the TCO algorithm cause costs to vary over 
time.  Reliability characteristics of equipment (influencing repair 
costs and downtime costs) and calibration cycle period (influencing 
metrology costs) are examples of two such factors.  In order for busi-
nesses to properly plan for future operating costs, it is important 
that TCO costs be modeled over time (see Figure 2).

Figure 2.  Total Cost of Ownership over time.

The example discussed later in this article illustrates the impact of 
these factors on a business’ gross margins.

Availability

Availability is defined to be the probability that a given piece of 
equipment or system meets its intended function at a specified point 
in time.  Factors that influence the Availability equation include the 
equipment’s hazard function (instantaneous failure rate), repair 
TAT distribution, calibration TAT distribution and customer use 
model.  Using specialized software and knowledge of product reli-
ability and maintainability (R&M), we can model complex systems 
to arrive at a deep understanding of the variables that drive Avail-
ability of the “system.”

Availability analysis at the system and subsystem levels provides 
clarity on the key drivers that most impact Uptime and TCO, 
thus enabling the business to make process recommendations for 
improving performance of the test system.  From a thorough under-

standing of R&M mechanisms at work will come creative solutions 
to increase Availability and reduce TCO.

Recall that Availability is defined as the probability that an item will 
be available when it is called upon for duty.  Availability can also be 
thought of as the proportion of total time that an item is available for 
use.  The underlying factors that influence availability are reliability 
and maintainability.  Reliability is the probability that an item meets 
its intended function over a given timeframe and in a given environ-
ment.  Maintainability is a measure of the ability to restore an item 
to a specified condition when a maintenance action is performed.

Three common measures of availability are Inherent Availability, 
Achieved Availability and Operational Availability.  Inherent Avail-
ability is the ideal situation where the repair action occurs without 
delay, i.e. immediately when the item fails.  Consequently, Inherent 
Availability is the simplest to model and is defined as:

Ai = γ / (γ + l)

where γ = repair rate and  = failure rate.

Assuming constant repair rate and constant failure rate, the simpli-
fied form of the Inherent Availability equation becomes:

Ai = MTBF / (MTBF + MTTR)

where MTBF is the mean time between failure and MTTR is the 
mean time to repair.

Achieved Availability is like Inherent Availability in that corrective 
maintenance actions are assumed to take place immediately upon 
failure.  However, Achieved Availability also takes into account pre-
ventive maintenance actions.  It is defined as:

Aa = MTBMA / (MTBMA + MMT)

where MTBMA is the mean time between both corrective and pre-
ventive maintenance actions and MMT is the mean maintenance 
action time.

Operational Availability best represents what is likely to occur in 
real life.  It takes Achieved Availability one step further by account-
ing for the fact that most maintenance actions are not instantaneous, 
e.g. factors such as logistical delays in dispatching maintenance 
crews and delays in delivering replacement parts to repair depots.  
It is defined as 

Ao = MTBMA / (MTBMA + MDT)

where MDT is the mean down time.

The example that follows employs Operational Availability methods.

Manufacturing of a New Microwave Device
Now let’s turn our attention back to using Availability analysis 
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methodologies to evaluate downtime mitigation strategies with 
the objective of minimizing TCO while still delivering on customer 
commitments.

We start by looking at a manufacturing operation that will produce 
a new microwave component.  This new product is expected to be 
in manufacture for two years before being discontinued.  Part of the 
manufacturing process includes final test where the device under 
test undergoes a complex suite of measurements.  These tests are 
performed by an elaborate test system comprised of three measure-
ment subsystem instruments (A, B and C) in which each has its own 
set of reliability characteristics.  The Test System ABC is configured 
such that the subsystems are in series reliability-wise as shown in 
Figure 3.

Figure 3.  Reliability representation of Test System ABC.

Reliability characteristics for Test System ABC:

Subsystem A:  2-parameter Weibull distribution with shape 
parameter (b) = 0.9 and scale parameter (η) = 2550

Subsystem B:  lognormal distribution with  logmean (μ) = 7.5 
and logstdev (s) = 1.1

Subsystem C:  2-parameter Weibull distribution with shape 
parameter (b) = 0.8 and scale parameter (η) = 9100

The manufacturing floor is comprised of 20 identical but independ-
ently-operated Test Systems ABC as shown in Figure 4.  The pro-
duction process runs 24x7 and is 100% utilized.  When one of the 
Test Systems goes down, the remaining 19 systems continue to run 
uninterrupted, however manufacturing output of the microwave 
device is temporarily lost until the failed system can be brought 
online again.  For each minute of lost test time due to corrective 
maintenance, the enterprise loses $4.00 of gross margin (sometimes 
referred to as gross profit).*

*  Gross margin = Net Sales minus Cost of Goods Sold 

Figure 4.  Manufacturing process flow.

Downtime Mitigation Strategies

Management has provided reliability engineering with the fol-
lowing four downtime mitigation scenarios for evaluation.  They 
would like a recommendation for a strategy that minimizes TCO 
(as measured by impact on gross margin) and delivers on customer 
expectations.

Scenario 1: High Reliability

A special environmentally-controlled enclosure is designed and 
built to house the 20 test systems.  Including procurement, instal-
lation, operating and energy costs, the total cost of the enclosure is 
$180,000.  The residual value of the enclosure at the end of its useful 
life is $40,000.  The enclosure results in improved reliability of the 
test systems with these reliability characteristics: 

Subsystem A’:   2-parameter Weibull distribution with shape 
paraeter (b) = 0.95 and scale parameter (η) = 4000

Subsystem B’:   lognormal distribution with  logmean (m) = 7.7 
and logstdev (s) = 1.0

Subsystem C’:  2-parameter Weibull distribution with shape 
parameter (b) = 0.85 and scale parameter (η) = 
12000

Cost to have a failed system repaired is $20,000 and repair TAT is 
10 days.

Scenario 2: Spare Test System

A complete spare test system is purchased and held in reserve.  
Cost is $320,000 and residual value after the end of its useful life is 
$60,000.   When a system goes down, the spare system is deployed 
by technicians.  The time required to deploy the spare system, verify 
performance characteristics and route production units to it is six 
hours.  Cost to have a failed system repaired is $20,000 and repair 
TAT does not impact system availability.

Scenario 3: Offsite Annual Repair Contract

A third party service company is utilized.  An annual repair con-
tract is arranged whereby the failed system is shipped offsite for 
expedited repair.  Cost of the annual contract is $180,000 per year to 
service the fleet of 20 test systems, and the downtime experienced 
during repair is five days.

Scenario 4: Onsite Repair

An arrangement is made with the equipment supplier to provide 
rapid response onsite repair of a downed test system.  This is 
handled on a Per Incident basis and repair cost is $35,000 per event.  
The downtime in this scenario is 24 hours.
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A summary of Investment (capital) expenses and Contract repair 
expenses for the four downtime mitigation strategies is shown in 
Table 1.

Reliability and Availability Analyses

Using the reliability characteristics of the subsystem components, 
the Test System reliability was calculated and charted over time as 
shown in Figure 5.  One can see that the environmentally-controlled 
enclosure in Scenario #1 provides improved reliability as compared 
with the system reliability observed in the three other scenarios.

Figure 5. Unreliability curves generated from modeling system reli-
ability of the four downtime mitigation strategies.

The reliability engineer then performed Availability analyses 
using the reliability and maintainability information provided in 
the four downtime mitigation strategies.  Test system availability 
was modeled and expected outcomes were calculated using Monte 
Carlo simulation as shown in Figure 6.

Figure 6.  Expected total downtime of the 20 test systems under four 
different downtime mitigation strategies.

Based on the Availability analysis, the engineer calculates the expected 
number of failures and expected total downtime over a two year 
manufacturing lifecycle.  Total repair costs were calculated by multi-
plying the expected number of failures times the Per Incident Repair 
costs listed earlier.  The repair cost for Scenario #3 is zero because all 
repairs are covered under a service contract.  Downtime costs were 
calculated by multiplying total expected downtime minutes times 
the impact on gross margin ($4.00 per downtime minute).  Impact 
of operating costs on gross margins is then calculated by summing 
repairs costs and downtime costs as shown in Table 2.

Note:  For each minute of lost test time due to corrective mainte-
nance, the enterprise loses $4.00 of gross margin.  This loss 
is reflected as Expected Downtime Costs and is calculated 
by multiplying Expected Downtime  x $4.00.

By combining investment costs, repair contract costs and operating 
costs, we have the total impact on gross margins expected over the 

USING AVAILABILITY ANALYSIS TO REDUCE TOTAL COST OF OWNERSHIP

Table 2.  Operational Availability, operating costs and impact on Gross Margins for the fleet of 
20 test systems over the two year manufacturing lifecycle.

Table 1.  Investment and Contract expenses to implement downtime mitigation strategies.

Scenario Downtime Mitigation 
Strategy

Investment Costs Residual Value Annual Contracted 
Repair Cost x 2

Total Invest. + 
Contract Costs

1 Enclosure $180,000 $40,000 $ - $140,000

2 Spare System $320,000 $60,000 $ - $260,000

3 Repair Contract $ - $ - $360,000 $360,000

4 Onsite Repair $ - $ - $ - $ -

Scenario Expected Op. 
Availability

Expected # of 
Failures

Expected Downtime 
(minutes)

Expected 
Repair Costs

Expected 
Downtime Costs

Impact of Op. Costs 
on Gross Margins

1 99.45% 8 115134 $160,000 $460,536 $620,536

2 99.98% 13 4677 $260,000 $18,708 $278,708

3 99.56% 13 92768 $ - $371,072 $371,072

4 99.91% 13 18662 $455,000 $74,648 $529,648
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two year manufacturing lifecycle of the new microwave component 
as shown in Table 3.

Table 3.  Total impact on gross margin from the four downtime 
mitigation scenarios.

Scenario Downtime Mitigation 
Strategy

Total Impact on 
Gross Margins

1 Enclosure $760,536

2 Spare System $538,708

3 Repair Contract $731,072

4 Onsite Repair $529,648

Through the incorporation of availability analysis with an under-
standing of TCO, we are able to develop a downtime mitigation 
strategy that minimizes costs to the organization and enables it to 
deliver on its customer commitments.  In this hypothetical example, 
we see that purchasing a Spare Test System or establishing an Onsite 
Repair Agreement will provide the business with optimized results.

Conclusions
The costs to operate equipment over its useful life can easily exceed 
the capital expense used to acquire the equipment.  Selecting an 
effective downtime mitigation strategy will help reduce the impact 
of unreliability on the business’ bottom line.  Performing availability 
analysis can be an essential step in selecting an optimal downtime 
mitigation strategy for reducing total cost of ownership.
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Degrader Analysis

The purpose of the degrader analysis is to ascertain where health 
monitoring technology would provide the greatest benefi t through 
the implementation of the Condition-Based Maintenance (CBM) 
methodology.  For U.S. Army Heavy Brigade Combat Team (HBCT) 
platforms the benefi t is achieved by decreasing diagnostic time 
(increasing platform operational availability), increasing mainte-
nance effectiveness, decreasing misdiagnosis/no evidence of failure  
conditions and facilitating the migration to a 2-tier maintenance 
system (only fi eld or depot maintenance, with no intermediate level 
of maintenance support).  In general, the degrader assessment aims 
to determine which platform components and sub-systems con-
tribute the most toward vehicle lost operational availability; then 
identify diagnostic, predictive and prognostic technologies that are 
mature and appropriate to apply to these specifi c components and 
sub-systems.  The greatest benefi t can be achieved when the tech-
nology is applied to the degraders of the vehicles primary functions 
(mobility, armor, weapons, etc.).  The determination and prioritiza-
tion of the degraders of each vehicle type is determined through the 
assessment of the following questions as shown in Figure 1.

The focus of this degrader analysis is to answer these questions 
through a systematic approach that enables the selection of the

Figure 1: Degrader Analysis Process

most effective health management technology and to determine 
where the application of the technology would provide the great-
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est benefi t.  The data and information that was gathered to answer 
these questions consisted of three types, including: part replacement 
data, maintainer interviews and an original equiptment manufac-
turer (OEM) questionnaire.  Once the components and sub-systems 
that have the lowest reliability and greatest number of maintain-
ability issues have been identifi ed, then the next step in the degrader 
process is to evaluate how these components fail and determine their 
dominant and critical failure modes.  This is accomplished using a 
FMECA on only the top degrader component and sub-systems.  The 
fi nal step in the degrader process identifi es appropriate technology 
solutions for monitoring each dominant and critical failure mode, 
capable of providing an on-board diagnostic, predictive or prognostic 
assessment.  These solutions are comprised of a basic methodology 
that fi rst describes the observable symptoms related to the dominant 
modes of failure, and then provides the approaches that can be taken 
to monitor these observables with specifi c sensing technologies.  
This provides a list of sensors and diagnostic/predictive/prognostic 
approaches from which the on-platform health management system 
can be designed.  Decision criteria can then be applied to determine 
which of the identifi ed engineering solutions to implement.  A very 
practical approach would involve the selection of the least number of 
sensors that would provide the broadest diagnostic and prognostic 
coverage.  The coverage percentage can be quantifi ed through the 
FMECA results by correlating the number of sensors applied to the 
number of failure modes.  A degrader analysis for the M1 Abrams 
and M2/M3 Bradley was conducted to assess the top degraders of 
each vehicle’s maintainability, reliability and operational availability 
(Ao ).  These vehicles will be used as examples for this paper.

Degrader Data Source 1: Part Replacement Data

In order to assess ‘which parts are replaced most often’ as a com-
ponent reliability indicator; part replacement data was gathered 
from the OSMIS and LOGSA data bases.  The fi rst set of data was 
obtained from TACOM and it provided the top 10 repairables and 
consumables by total cost for the year 2006.

The tables provide an indication of which vehicle components or 
line replaceable units (LRU) are the highest cost drivers for each 
vehicle type for the year 2006.  The tables provide the total number 
of LRU’s that have been replaced, the total cost associated with each 
LRU and the cost per mile.  

The next collection of part replacement data that was evaluated as 
a component reliability indicator was OSMIS data from the years 
2002 to 2006 for the M1A1, M1A2, M2A2, M2A3, M3A2 and M3A3 
platforms.  The Operating and Support Management Information 
System (OSMIS) is the core of the Army Visibility and Manage-
ment of Operating and Support Costs (VAMOSC) program.  OSMIS 
tracks operating and support data of major Army weapon/materiel 
systems, and develops cost factors for the purpose of supporting a 
wide variety of analyses.  OSMIS data can provide insight into the 
total quantity of parts obtained over a specifi ed time period. This 
data does not necessarily refl ect actual component failure rates, 
however it does clearly identify where O&S funds are being spent.  

The third collection of part replacement data that was evaluated as 
a component reliability indicator was from the LOGSA Logistics 

Information Warehouse (LIW).  The LIW contains data from the Inte-
grated Logistics Analysis Program (ILAP) and the Army’s Logistic 
Information Database (LIDB). Both databases contain records of 
dead-lining reports, and parts ordered against those repairs.  

Table 1A: M1A2 Abrams Top Repairables

Table 1B: M2A2 Bradley Top Consumables

Degrader Data Source 2: Customer Interviews
The second source of data and information for the degrader analy-
sis was compiled results of interviews conducted with one of the 
primary VHMS customer groups: vehicle maintainers, fi eld service 
representatives (FSR) and vehicle operators.  The interviews con-
sisted of a series of questions that are focused at gaining insight into 
vehicle component reliability, vehicle maintainability, maintainer 
effectiveness and platform operational availability issues.  Three 
example questions included:

1.  Which components or sub-systems fail or require unsched-
uled maintenance most often (list from most to least)? 

2.  Which subsystems require the most scheduled main-
tenance in terms of time spent conducting preventive 
maintenance checks and services (PMCS)?  (Breakdown by 
sub-system was provided.)

2b.   What is a typical amount of total time for conducting 
weekly PMCS paperwork (time and percentage)?

3.  Which LRU’s, components or sub-systems are the most 
diffi cult to troubleshoot for faults (Example: Weapons 
electronic circuit cards, fi nal drive gear box, etc.)?  Note: 
Specify troubleshooting information/technique issues for 
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this question and not physical design issues.  (Breakdown 
by sub-system was provided.)

The results of the interviews for each platform were compiled and 
summarized with an emphasis on categorizing and prioritizing 
the data based on the issues that were consistently reported by the 
larger number of interviewees.

Degrader Data Source 3: Platform OEM 
Questionnaire
In order to provide an additional source of data and information 
for the degrader analysis, a questionnaire was developed for the 
OEMs to complete for Abrams and Bradley platforms.  The focus 
of the questionnaires was to gather information about compo-
nent reliability, component functionality, component criticality 
to the platform and maintainability issues for each of the major 
vehicle sub-systems and components as described by each plat-
forms maintenance allocation chart (MAC).   

The assessment analyses for each component or sub-system are 
based on seven factors including: Mission Criticality, Mission Reli-
ability, On-Board Diagnostics, At-Platform Diagnostics, Time and 
Difficulty to Diagnose, Time and Difficulty to Repair and Relative 
Cost to Maintain.   

This questionnaire is not intended to be a rigorous engineering 
reliability analysis. The primary purpose of the questionnaire is to 
provide a relative comparison of the vehicle components to each 
other for the selected factors, so that a general assessment of ‘high 
opportunity’ sub-systems and components can be evaluated for the 
degrader assessment.  The course and broad ranking system was 
selected, so that the OEM can more quickly complete the question-
naire for use as a general reference.  

Degrader Analysis – Systems for Focus
The top degrader components and sub-systems for each platform 
were selected based on analysis of three data sources including:  the 
parts replacement data from the OSMSIS and LOGSA databases, the 
results of the interviews and the OEM questionnaire.    

The results of the degrader analysis include a list of components 
and sub-systems that contribute most to maintainability, reliability 
and vehicle operational availability issues.  The degrader list for the 
M1 Abrams is shown in Table 6.

Table 6: General Degrader List for the M1 Abrams Tank

The first 2 columns show the 2006 OSMIS repairable and consumable 
costs for the M1A1 and M1A2 respectively.  The current diagnostic 

and prognostic potential columns indicate whether an automated 
diagnostic or prognostic capability exists or the sensor capability 
exists on the platform for the potential development. The future diag-
nostic or prognostic potential column indicates whether technology 
exists that could be applied to the platform to enable diagnostics or 
prognostics if it does not currently exist.  If a future prognostic capa-
bility is indicated then a diagnostic capability is also implied, but if a 
future diagnostic capability is indicated then a prognostic capability 
is not implied.  The diagnostic and prognostic assessments are general 
estimates that were conducted early in the program development; the 
potential for diagnostic and prognostic capabilities will change as we 
learn more about the platform systems, their failure mechanisms and 
as the diagnostic and prognostic technologies mature.  The degrader 
list for the M2/M3 Bradley is shown in Table 7.

Table 7: General Degrader List for the M2/M3 Bradley Fighting Vehicle

The results of the degrader analysis provides the focus for the 
optimum development and application of embedded vehicle diag-
nostics and prognostics, which will enable the ability to implement 
a condition based maintenance methodology for more effective and 
efficient HCBT platform maintenance, logistic support and platform 
life cycle management.     

Degrader Potential Solutions
The results of the vehicle degrader analysis was used to provide a 
focused list of specific systems and components for each platform 
type, for which VHMS could provide the greatest benefit in terms of 
increasing operational availability.  The next portion of the analysis 
involved identifying sensors that could be utilized to enable an effec-
tive VHMS.  An analysis was conducted using the degrader results 
that involved using field service representative reports for each plat-
form type and the reliability centered maintenance (RCM) process 
known as failure modes, effects and criticality analysis (FMECA).  
This vehicle degrader solutions analysis provides a recommended 
list of sensors that either currently exist on the platform or would 
need to be added to enable a diagnostic or predictive capability for 
each degrader system or component.

Failure Modes, Effects and Criticality Analysis

The FMECA method is a RCM-based tool that is used for identify-
ing, evaluating and prioritizing the functional failure modes of a 
system.  When sensor information for each failure mode is identi-
fied as an addition to the standard FMECA format, then this evalua-
tion tool can also be useful for the selection of sensors for the design 
of a system focused health management architecture.  An example 
of the FMECA format that was used for this evaluation from the fuel 
system for the Bradley M2/M3 is shown in Figure 2.  
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The results of the FMECA will be used to facilitate the design 
of the VHMS architecture by identifying the sensors required to 
monitor for the dominant failure modes.    The primary objective is 
to identify sensors that currently exist on the platform that could 
be used to monitor for each failure mode.  When a sensor is not 
identified, an appropriate sensor is suggested.  The completed 
FMECA provides a list of sensors that could be utilized to cover 
all of the dominant failure modes. The focus is to determine what 
are the least number of sensors that can be implemented to detect 
the greatest number of dominant failure modes.  Those results and 
recommendations will be provided in this report for each specific 
component and sub-system that was evaluated.  Based on the 
required failure mode coverage that is desired, the optimum selec-
tion of sensors for the platform embedded diagnostic, predictive 
and prognostic capability can be selected.  

Bradley Degrader Solution Example: Fuel System

The FMECA for the Bradley fuel system lists eleven failure modes.  
It was determined based on the criticality portion of the analysis 
that three of the eleven could be considered ‘high criticality’ failure 
modes that warrant possible alleviation through the implementa-
tion of vehicle health management technology.  The first failure 
mode will be discussed in more detail.

Arguably, the fuel system failure mode that has the greatest impact 
on vehicle functionality and the highest probability of occurrence 
based on the FSR report analysis is the pressure-time (PT) fuel 
pump.  The PT fuel pump accounted for 17 out of 40 (43%) reported 
incidents from the fuel system portion of the FSR report.   This is 
the high pressure fuel pump that provides fuel delivered from the 
fuel tank to the injectors and it is a single point of failure.  The 
failure mode symptoms and effects with corresponding sensors 
that could be utilized to monitor for each symptom or effect are 

listed.  The sensors listed with blue letters currently exist on the 
platform and the sensors listed in red are sensors that have been 
used with an at-platform STE system or are analog sensors that 
will require data conversion to digital.

Table 5: Effects and Sensors for PT Fuel Pump

 

The vehicle’s current configuration does not utilize any sensors on the 
platform for conducting diagnostics specifically for the fuel system.  A 
diagnostic capability could be enabled with the utilization of several 
existing vehicle signals including: throttle position, transmission 

range engaged and engine speed.  
These sensors could be used with 
a data fusion approach, which 
could be beneficial for conduct-
ing general fuel system diagnos-
tics and potentially provide a 
predictive capability.  This group 
of sensors could provide the 
ability to isolate a failure to the 
fuel system but it may not have 
the capability to isolate a failure 
to a specific component in the 
system (such as the PT pump).  
The ability to diagnose a failure 
and potentially predict a fault to 
the PT pump is dependant upon 
the ability to measure whether 
the pump pressure is within the 
specified operational range.  In 
order to conduct basic diagnos-
tics specifically for the pump, a 
pressure switch is sufficient but 
in order to provide a predictive 
capability a broad frequency 

bandwidth pressure transducer is required with supporting high 
sample rate data acquisition capability.  The details for the develop-
ment of a predictive capability for the PT fuel pump involve several 
steps.  The first step is to identify the specific failure mechanisms of 
the pump (i.e. bearing failure, motor winding shorts, etc.).  The next 
step is to develop early fault detection algorithms that are sensitive 
to the specific failure mechanism characteristic parameters (i.e. 2nd 
harmonic of the rotational speed vibration, bearing inner race fault 
frequency, etc.).  In our experience, we have observed that many 
failure mechanism effects from a gear-driven or electric motor-driven 
pump can be detected in the broadband frequency pulsations of the 
pump flow stream.  The predictive capability for the PT Pump could 
involve installing a broad bandwidth (3 to 20,000 Hz) capable pres-
sure transducer in the pump outlet flow stream and supporting high 
sample rate (>40,000 Hz) data acquisition hardware.  The hardware 
could apply time and frequency based analysis techniques to the 
raw pressure pulsation data to create condition indicators (CI) that 
are sensitive to specific failure mechanisms.  Once the fault evolu-

continued on next page ›››

Figure 2: FMECA Example for Bradley M2/M3 Fuel System
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tion effects on the CI’s are characterized, the CI’s can be trended over 
time against established detection and failure thresholds to provide a 
predictive fault indication as shown in Figure 3.

Figure 3: Condition Indicator Trending Against Defined Thresholds  

The thresholds can be determined by several different means 
including statistical-based and physics model-based methods.  The 
effectiveness of the prediction is dependant upon access to available 
data for the generation, training and testing of the CI’s, threshold 
levels and the projection algorithms/models. 

A generalized and estimated comparative description of the differ-
ences between the VHMS capabilities for the PT fuel pump is pro-
vided in Table 6. 

Table 6: VHMS Capability Description for the PT Fuel Pump

The VHMS capabilities listed for each fault are presented in tables in 
which the rows of the table include three categories: the existing capa-
bility on the platform to provide health monitoring for the specifi ed 
component, expanded diagnostic capability (which would require 
the addition of hardware and software), and a predictive capability 
(which would require the addition of sensors, additional data acquisi-
tion and processing technology, advanced algorithms and software).  

The health coverage column provides an approximate indication of 
the percentage of the failure modes/mechanisms that each VHMS 
capability could detect.  This percentage was extracted from the FSR 
report and FMECA results and it provides a coarse estimate of the 
impact for each capability level.  Though in some cases, there may 
not be a dramatic health coverage difference between the diagnostic 
and predictive capabilities; the signifi cant difference between the 
capabilities occurs through the logistic benefi t.  The logistics benefi t 
for the predictive capability is the potential to plan for maintenance 
activities while the platform is still functional, which could have a 
direct impact on platform operational availability.  This benefi t will 
be more fully realized when this data is applied to the cost benefi t 
analysis model [4] which is described in another publication.   

Conclusion
The degrader analysis results for each platform provide a defi ned 
path forward to determine where the implementation of embedded 
diagnostics and prognostics would provide the greatest benefi t in 
terms of increasing maintenance effi ciency, effectiveness and vehicle 
Ao.  The components and sub-systems listed in the degrader results 
provide the focus for the implementation of the VHMS technology.  
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Introduction

Reliability growth is the improvement in reliability over a period of 
time due to changes in product design or a manufacturing process. 
This occurs by performing root cause analysis of failures detected 
during testing, and implementing effective corrective actions. 

Typical reliability growth testing involves the use of times-to-
failure data obtained from the device testing during development. 
However, many products or systems, such as rockets and missiles, 
may not produce times-to-failure data because they are one time 
usage (or one-shot) devices. Such devices require algorithms differ-
ent from the ones used to analyze times-to-failure data. 

Motivation

MIL-HDBK 189A entitled “Department of Defense Handbook Reli-
ability Growth Management” deals with the science of calculating 
Reliability Growth. It is very detailed and is the result of years of 
hard work and study. However, its treatment of “one shot” devices, 
sometimes referred to as discrete devices, utilizing the AMSAA / 
Crow Discrete Reliability Growth Tracking Model (algorithm) is 
somewhat diffi cult to follow. In my last article, entitled “Measur-
ing Failure Rates by Testing” I presented an industry standard 
algorithm (equation) that is used by major IC manufacturing com-
panies to measure failure rates of ICs. This algorithm uses times-
to-failure data obtained from device testing. The article’s objective 
was to reveal the algorithm’s foundation (pure and basic probability 
theory) so one could more easily understand how and why it works. 
It turns out that this same algorithm, with some minor modifi ca-
tions, can also be used to measure reliability of “one shot” devices. 
Not only is this proposed methodology easier to understand, but 
it is also desirably more fl exible than the AMSAA / Crow method 
which is the motivation for this article. 

The Chi-Square Algorithm

The excerpt below illustrates an industry standard method for cal-
culating maximum failure rate (lMAX) of electrical devices utilizing a 
Chi-Square (c2) Distribution Algorithm. The quantitative inputs to 
this algorithm are the number of devices (usually ICs) being tested, 
the number of hours under test, the number of failures detected, and 
a (confi dence level in percent). The output is the maximum failure 
rate (minimum MTTF) of the device associated with a specifi ed a
where T = number of devices being tested (n) times the number of 
hours under test (t) i.e. T = n ∙ t.

Excerpt from National Semiconductor 
(Chi-Square Algorithm)

    
λMAX =

χ1−α
2 [with df =  2(r +1)]

2T
 

Maximum Failure Rate or worst case where:

c2 = Chi-Square Distribution
r = Number of Failures
df = Degrees of freedom
T =  Total number test hours (number of devices x number of hours)
a = Statistical error expected in estimate. For 60% confi dence level, 
a = 0.6

Alpha can then be interpreted to mean that we can state with statis-
tical confi dence level of alpha (i.e., 60%) that the actual failure rate 
is equal to or less than the calculated maximum (lMAX) failure rate.

D I S C R E T E  R E L I A B I L I T Y  G R O W T H  T R AC K I N G                    

Vito Faraci Jr
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Small Modification

Assuming the above algorithm valid, it is modified as follows:  
Since T = n∙t  =  number of devices x number of hours, we replace T 
with n∙t and get:

    
λMAX   =    χ1−α

2 [ df =  2(r +1)]
2T

    ⇒    λMAX   

=    χ1−α
2 [ df =  2(r +1)]

2nt
    ⇒    λMAX ⋅ t  

=    χ1−α
2 [df =  2(r +1)]

2n
Assuming an exponential characteristic of failure, the equation for 
probability of failure (q) is q = 1-e-lt  where l = failure rate and t = expo-
sure time. It can be proven that if q is small,     q =  1− e−λt ≈  λt  . 

(See Appendix for a proof of this and a discussion on the 
expected error.) Substituting q for lt we get  qMAX   =  lMAX ∙ t  = 

    

χ1−α
2 [df = 2(r +1)]

2n
  ⇒

Modified Chi Square Algorithm

    
qMAX =

χ1−α
2 [with df =  2(r +1)]

2n
  Maximum Probability of Failure or 

worst case where:

c2 = Chi-Square Distribution
r = Number of Failures
df = Degrees of freedom
n = Total number of trials
a = Statistical error expected in estimate. For 60% confidence level, 
a = 0.6

Alpha can then be interpreted to mean that we can state with statis-
tical confidence level of alpha (i.e., 60%) that the actual probability 
of failure is equal to or less than the calculated maximum (qMAX) 
probability of failure.

Note: Since RelMIN  = 1-qMAX  the above could also be stated in terms 
of RelMIN

Basic Algorithm (Assuming 90% 
Confidence Level)
To illustrate this modified algorithm in its very basic form, consider 
the following example where 6 trial tests are performed, and all 
trials pass except for trial 4 (see chart below). Columns 1 and 2 keep 
track of trials and pass/fail score for each trial as shown. Note that 
r is the cumulative number of failures that occur, and df = 2(r+1) as 
shown in Columns 3 and 4. Column 5 is a Chi-Square Table look-up 
using a = 0.9 (see Appendix), and Column 6 (qMAX) is simply Column 
5 divided by 2n. Finally Column 7 (RelMIN) is simply 1−Column 6. 
So it is obvious that data entry is quite simple and easy to compile 
using a spreadsheet.

1 2 3 4 5 6 7
n

(Trial 
#)

Pass
 / 

Fail

r df 
2(r+1)   χ 0.1

2 [df ] 
(Table look-up)

qMAX  =

  

χ 0.1
2 [df ]
2n

 

RelMIN  = 
1-qMAX

1 Pass 0 2 4.6052 2.3026 -1.3026
2 Pass 0 2 4.6052 1.1513 -0.1513
3 Pass 0 2 4.6052 0.7675 0.2325
4 Fail 1 4 7.7794 0.9724 0.0276
5 Pass 1 4 7.7794 0.7779 0.2221
6 Pass 1 4 7.7794 0.6483 0.3517

Taking Appropriate Credits/Discredits 
with Failure Root Cause Analysis
In order to measure device reliability as accurately as possible, a 
root cause analysis should be performed after every failure. Root 
cause analyses will reveal various causes of failure which may or 
may not be due to the design flaws.  Consider the following cases:

Case 1 - Human Error

Root cause analysis of a failure determined that a technician loaded 
incorrect software into a device prior to testing. In such a case, the 
trial should be discounted. 

When measuring device reliability, human error should not be 
counted towards a device failure. Probability of human error should 
be considered separately from hardware/software reliability.

Case 2 – 100% confidence of fix

Root cause of failure was determined and a fix put in place resulting 
in 100% confidence that the particular failure could not occur again. 
For example it is determined that an incorrect part was installed in 
a device due to a Bill of Material typo.  Again, in such a case, the 
failure should be discounted. 

Note: Some engineering judgment is required here. If it is deter-
mined positively that the device would have indeed passed its test 
if the correct part was installed, consideration should be made for 
taking credit for that trial.

Case 3 – xx% confidence of fix
Root cause of failure is determined and fix put in place resulting in 
xx% confidence that the particular failure cannot occur again. For 
example, engineering implements a fix with a 65% confidence that 
the failure will not occur again. Instead of taking total discredit for 
the failure, consideration should be made for taking 65% credit for 
that trial which is equivalent to taking a discredit of 0.35 failures. The 
modified algorithm is designed to handle partial failure representa-
tions. This allows for taking partial credit or discredit for a failure.

Case 4 – Root cause of failure cannot be 
determined. In this case, no credit should be taken. 
Due to the fact that all the above cases (scenarios) do commonly 
occur, it is desirable that an algorithm be capable of allowing the 
user to input partial credit or discredit for any given failure. 

continued on next page ›››
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Example 1: (90% Confidence, Initial Reliability 0%) (See 
explanation of negative entry)

R(initial) n Pass/Fail FIX
% Conf.

r df Chi Sq Q Rel

0

1 Pass 0 2 4.6052 1.1513 -0.1513

2 Pass 0 2 4.6052 0.7675 0.2325

3 Pass 0 2 4.6052 0.5756 0.4244

4 Fail 60 0.4 2.8 5.9221 0.5922 0.4078

5 Pass 0.4 2.8 5.9221 0.4935 0.5065

6 Pass 0.4 2.8 5.9221 0.4230 0.5770

7 Fail 75 0.65 3.3 6.7098 0.4194 0.5806

8 Pass 0.65 3.3 6.7098 0.3728 0.6272

9 Pass 0.65 3.3 6.7098 0.3355 0.6645

10 Pass 0.65 3.3 6.7098 0.3050 0.6950

11 Pass 0.65 3.3 6.7098 0.2796 0.7204

12 Pass 0.65 3.3 6.7098 0.2581 0.7419

13 Pass 0.65 3.3 6.7098 0.2396 0.7604

14 Pass 0.65 3.3 6.7098 0.2237 0.7763

15 Pass 0.65 3.3 6.7098 0.2097 0.7903

16 Fail 90 0.75 3.5 7.0154 0.2063 0.7937

17 Pass 0.75 3.5 9.9405 0.1949 0.8051

18 Pass 0.75 3.5 9.9405 0.1846 0.8154

19 Fail 0 1.75 5.5 9.9405 0.2485 0.7515

20 Pass 1.75 5.5 9.9405 0.2367 0.7633

21 Pass 1.75 5.5 9.9405 0.2259 0.7741

22 Pass 1.75 5.5 9.9405 0.2161 0.7839

23 Pass 1.75 5.5 9.9405 0.2071 0.7929

24 Pass 1.75 5.5 9.9405 0.1988 0.8012

25 Pass 1.75 5.5 9.9405 0.1912 0.8088

26 Fail 100 1.75 5.5 9.9405 0.1841 0.8159

27 Pass 1.75 5.5 9.9405 0.1775 0.8225

28 Pass 1.75 5.5 9.9405 0.1714 0.8286

29 Pass 1.75 5.5 9.9405 0.1657 0.8343

30 Pass 1.75 5.5 9.9405 0.1603 0.8397

31 Pass 1.75 5.5 9.9405 0.1553 0.8447

32 Pass 1.75 5.5 9.9405 0.1506 0.8494

33 Pass 1.75 5.5 9.9405 0.1462 0.8538

34 Pass 1.75 5.5 9.9405 0.1420 0.8580

35 Pass 1.75 5.5 9.9405 0.1381 0.8619

36 Pass 1.75 5.5 9.9405 0.1343 0.8657

37 Pass 1.75 5.5 9.9405 0.1308 0.8692

38 Pass 1.75 5.5 9.9405 0.1274 0.8726

39 Pass 1.75 5.5 9.9405 0.1243 0.8757

40 Pass 1.75 5.5 9.9405 0.1212 0.8788

41 Pass 1.75 5.5 9.9405 0.1183 0.8817

42 Pass 1.75 5.5 9.9405 0.1156 0.8844

43 Pass 1.75 5.5 9.9405 0.1130 0.8870

R(initial) n Pass/Fail FIX
% Conf.

r df Chi Sq Q Rel

0.7

1 Pass 0 2 4.6052 0.3289 0.6711

2 Pass 0 2 4.6052 0.2878 0.7122

3 Pass 0 2 4.6052 0.2558 0.7442

4 Fail 60 0.4 2.8 5.9221 0.2961 0.7039

5 Pass 0.4 2.8 5.9221 0.2692 0.7308

6 Pass 0.4 2.8 5.9221 0.2468 0.7532

7 Fail 75 0.65 3.3 6.7098 0.2581 0.7419

8 Pass 0.65 3.3 6.7098 0.2396 0.7604

9 Pass 0.65 3.3 6.7098 0.2237 0.7763

10 Pass 0.65 3.3 6.7098 0.2097 0.7903

11 Pass 0.65 3.3 6.7098 0.1973 0.8027

12 Pass 0.65 3.3 6.7098 0.1861 0.8136

13 Pass 0.65 3.3 6.7098 0.1766 0.8234

14 Pass 0.65 3.3 6.7098 0.1677 0.8323

15 Pass 0.65 3.3 6.7098 0.1598 0.8402

16 Fail 90 0.75 3.5 7.0154 0.1594 0.8406

17 Pass 0.75 3.5 7.0154 0.1525 0.8475

18 Pass 0.75 3.5 7.0154 0.1462 0.8538

19 Fail 0 1.75 5.5 9.9405 0.1988 0.8012

20 Pass 1.75 5.5 9.9405 0.1912 0.8088

21 Pass 1.75 5.5 9.9405 0.1841 0.8159

22 Pass 1.75 5.5 9.9405 0.1775 0.8225

23 Pass 1.75 5.5 9.9405 0.1714 0.8286

24 Pass 1.75 5.5 9.9405 0.1657 0.8343

25 Pass 1.75 5.5 9.9405 0.1603 0.8397

26 Fail 100 1.75 5.5 9.9405 0.1553 0.8447

27 Pass 1.75 5.5 9.9405 0.1506 0.8494

28 Pass 1.75 5.5 9.9405 0.1462 0.8538

29 Pass 1.75 5.5 9.9405 0.1420 0.8580

30 Pass 1.75 5.5 9.9405 0.1381 0.8619

31 Pass 1.75 5.5 9.9405 0.1343 0.8657

32 Pass 1.75 5.5 9.9405 0.1308 0.8692

33 Pass 1.75 5.5 9.9405 0.1274 0.8726

34 Pass 1.75 5.5 9.9405 0.1243 0.8757

35 Pass 1.75 5.5 9.9405 0.1212 0.8788

36 Pass 1.75 5.5 9.9405 0.1183 0.8817

37 Pass 1.75 5.5 9.9405 0.1156 0.8844

38 Pass 1.75 5.5 9.9405 0.1130 0.8870

39 Pass 1.75 5.5 9.9405 0.1104 0.8896

40 Pass 1.75 5.5 9.9405 0.1080 0.8920

41 Pass 1.75 5.5 9.9405 0.1057 0.8943

42 Pass 1.75 5.5 9.9405 0.1035 0.8965

43 Pass 1.75 5.5 9.9405 0.1014 0.8986

Example 1A: (90% Confidence, Initial Reliability 70%)

DISCRETE RELIABILITY GROWTH TRACKING                    
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Basic Algorithm with Added Features

1. Allows for partial credit (discredit) of failures when engineer-
ing judgment calls for it, i.e. percent confi dence of fi xes. 

2. Allows for user input of initial reliability.

Example 1 illustrates reliability growth tracking with 43 trials cal-
culated at a 90% confi dence level. Five failures were detected, a 
root cause analysis was performed after each failure, and a fi x put 
in place whenever the root cause was determined. Note how the 
algorithm handles partial credit/discredit for failures. If an xx% fi x 
confi dence is established, instead of counting one whole failure, 
(100− xx)% of the failure is counted. 

Explanation of Negative Probability Entry
Initial negative probability entries are a result of the nature of the 
Chi-Square Algorithm itself and the % Confi dence factor selected. 
The output of negative probabilities is simply the algorithm’s way 
of indicating that there is not enough input data present. These nega-
tive entries can easily be replaced by zeroes, but this will only be a 
cosmetic fi x and would not add to the algorithm’s accuracy. From a 
mathematical point of view the negative readings may be desired and 
can be left on the chart. From a practical point of view zeros may be 
more desirable. This should be left to the analyst’s discretion.

Defi nition: Confi dence Level is a percentage measure of times test 
results can be expected to be within a specifi ed interval. 

Therefore in the Rel Growth Spreadsheets above, one can 
expect a percentage measure of times that the variable λ will 
be found in an interval. This is mathematically represented 
as     P (0 ≤   λ  ≤   λMAX )  =   0.9  where 0.9 represents 90% 
probability.

Code for Excel Spreadsheet used to generate Examples 1 and 1A:
Name Column Code / Entry

n B Enter trial number n
Pass/Fail C Enter Pass / Fail

Fix 
% Conf

D Enter confi dence of fi x

df F =2*ER+2
Chi Sq G =(CHIINV(0.1,INT(FR))+(FR-

INT(FR))*(CHIINV(0.1,INT(FR)+1)−CHIINV(0.1,INT(FR))))
Q H =GR/2/(BR+$N$2−1)

Rel I =1−HR

Note: R= row numbers 4 thru 46. So for example fi ll Column F with  
=2*E4+2  thru  =2*E46+2

Name Cell Code / Entry Notes
Init Rel A3 Enter Rel Initial

N2 =INT(CHIINV(0.1,2)/2/(1−$A$3)) used for initial rel calculation
r E4-E6 0 r = 0
r E7-E9 =(100−$D$7)/100 fi rst failure appears in row 7
r E10-E18 =$E$9+(100−$D$10)/100 second failure appears in row 10
r E19-E21 =$E$18+(100−$D$19)/100 third failure appears in row 19
r E22-E28 =$E$21+(100−$D$22)/100 fourth failure appears in row 22
r E29-E46 =$E$28+(100−$D$29)/100 fi fth failure appears in row 29

Notes: Column E has to be fi lled manually. Note that Column E 
entries remain the same until a failure occurs.

Graph of Examples 1 and 1A above showing the effect of differing initial reliability

Note: Recall this entire methodology is based on pure and basic Probability theory.
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Discussion on Expected Error

lt = Lambda x time is an approximation for 1-e−lt when lt  is small. 
As far as the accuracy of this approximation tool refer to the table 
below. As an example lt = 0.1666 Þ 8.56% error. With respect to 
missiles and rockets, t (exposure time) may only be for seconds 
or minutes. So for example to get some perspective, let us take a 
missile with a one minute exposure time (t = 1/60 hours). Then cal-
culate a value of lambda required to yield a product of 0.166.  0.166 
= lt = l/60/106 Þ l = 10 failures per hour or 10 million FPMH. This 
implies a very poor design which is not realistic. Let us now take 
a more realistic lambda like 1000 FPMH, then lt = 1000/60/106 = 
.00001666666666666 Þ 1-e− lt = 0.0000166665277785416 which yields 
an expected error of 0.00083% which is negligible.

FPMH vs. Expected % Error Chart
(based on a one minute exposure time)

FPMH
(t=1min)

% Error lt
(Lambda x time)

1-e^(-λt)

50,000,000 47.38781268 0.833333333333 0.56540179149292200000

10,000,000 8.564707718 0.166666666667 0.15351827510938600000

5,000,000 4.22453034 0.083333333333 0.07995558537067670000

1,000,000 0.835648137 0.016666666667 0.01652854617838250000

500,000 0.41724537 0.008333333333 0.00829870736112404000

100,000 0.083356481 0.001666666667 0.00166527854906129000

50,000 0.041672454 0.000833333333 0.00083298620754168600

10,000 0.008333565 0.000166666667 0.00016665277854932500

5,000 0.004166725 0.000083333333 0.00008332986120751510

1,000 0.000833336 0.000016666667 0.00001666652777854160

500 0.000416668 0.000008333333 0.00000833329861116283

100 8.33328E-05 0.000001666667 0.00000166666527778858

There was an error in the article titled “Using Cost and Schedule Estimates to Plan 
Effi cient, Coordinated Programs of Reliability Growth and Qualifi cation Testing” 
by David Lee and E. Andrew Long appearing on page 6 of the 4th Quarter 2009 journal. 
Equation number 12 should be as follows:

TTAAF =
1
β

λi + λA − λn
*

λn
* − λA − λi(1−μd )

CORRECTION
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MEASURING FAILURE RATE BY TESTING

Theorem 

  

limit
x →   0

  1− e−x 

x
  =   1  

Proof  using  L' hopital' s Rule

L' hopital' s Rule :   If  a)limit
x →   0

 f(x)  =   0  and  limit
x →   0

 g(x)  =   0  and   b)limit
x →   0

  f '(x)
g '(x)

  exists,   then  limit
x →   0

  f(x)
g(x)

  =   limit
x →   0

  f '(x)
g '(x)

Let  f(x)  =   1− e−x  and  g(x) =  x  ⇒   f(0) =  0  and  g(0) =  0  satisfies  condition  a)

f '(x)  =  e−x,   g '(x)  =   1  ⇒   f '(x)
g '(x)

  =   e−x ⇒   f '(x)
g '(x)

  exists  satisfies  condition  b)  ⇒

limit
x →   0

  f(x)
g(x)

  =   limit
x →   0

  f '(x)
g '(x)

  =   limit
x →   0

  e
−x

1
  =   1  ⇒  limit

x →   0
  f(x)

g(x)
  =   1   ⇒  limit

x →   0
  1− e−x 

x
  =   1    //

Visual Evidence of Theorem: 
Graphs of   y = x   &   y = 1−e−x

0 ≤ x ≤ 1 0 ≤ x ≤ 0.5

0 ≤ x ≤ 0.1 0 ≤ x ≤ 0.1

Note: as x gets closer to zero how the blue and red graphs become super-imposed.

THE JOURNAL OF THE RELIABILITY INFORMATION  ANALYSIS CENTER     ―     SECOND QUARTER 2010 

continued from page 29



RIAC JOURNAL SURVEY
SECOND QUARTER - 2010

Journal Format                Hard Copy                     Web Download

How satisfied are you with the content (article technical quality) in this issue of the Journal?

 Very Satisfi ed  Satisfi ed  Neutral  Dissatisfi ed  Very Dissatisfi ed

How satisfied are you with the appearance (layout, readability) of this issue of the Journal?

 Very Satisfi ed  Satisfi ed  Neutral  Dissatisfi ed  Very Dissatisfi ed

How satisfied are you with the overall quality of this issue of the Journal (compared to similar magazines, newsletters, etc.)?

 Very Satisfi ed  Satisfi ed  Neutral  Dissatisfi ed  Very Dissatisfi ed

How did you become aware of this issue of the Journal?

 Subscribe    Colleague    Library    RIAC Website    RIAC Email    Conference/Trade Show

Would you recommend the RIAC Journal to a colleague?

 Defi nitely  Probably  Not Sure  Probably Not  Defi nitely Not

Please suggest general changes / improvements to the RIAC Journal that would improve your level of satisfaction:

Please suggest further topics for the RIAC Journal that might help it to better meet your needs:

Overall satisfaction

 Very Satisfi ed (5)  Satisfi ed (4)  Neutral (3)  Dissatisfi ed (2)  Very Dissatisfi ed (1)

THIRD QUARTER  //
  2009

J O U R N A L

OF THE RELIABILITY  IN
FORMATION ANALYSIS CENTER

VOLUME 17, N
O. 3

02
   I

mproving Design for  Rel ia
bi l i t

y  (DFR)  Processes 

Using M
odif ied Crow Extended Rel ia

bi l i t
y  Growth 

Model  M
etr ics

29
   D

eterminat ion of  an Achievable  M
ater ie l 

Avai la
bi l i t

y  for  the Joint  Air - to -Ground M
iss i le

 

RACRACi

FOURTH QUARTER  //  2009

j o u r n a l
OF THE RELIABILITY  INFORMATION ANALYSIS CENTER

VOLUME 17, NO. 4

02  ›  Us ing Cost  and Schedule  Est imates  to  Plan 
Ef f ic ient ,  Coordinated Programs of  Rel iabi l i t y 
Growth and Qual i f icat ion Test ing

12  ›  New Vers ion of  MIL-HDBK-189,  “Rel iabi l i t y  Growth 
Management ” 

20  ›  The MINE Projec t :  Combining Tex t ,  Tex ture,  and 
Posit ion I nformation to  Discover  Rel iabi l i t y  Data 
on the I nternet

RACRACi
The Reliability Information Analysis Center (RIAC) 
is a DoD Information Analysis Center sponsored by 
the Defense Technical Information Center

 of the Journal?

 Very Dissatisfi ed

FOURTH QUARTER  //  2009

j o u r n a l
OF THE RELIABILITY  INFORMATION ANALYSIS CENTER

VOLUME 17, NO. 4

02 › Using Cost  and Schedule  Est imates  to  Plan 
Ef f ic ient ,  Coordinated Programs of  Rel iabi l i t y 
Growth and Qual i f icat ion Test ing

12 › New Vers ion of  MIL-HDBK-189,  “Rel iabi l i t y  Growth 
Management ” 

20 › The MINE Projec t :  Combining Tex t ,  Tex ture,  and 
Posit ion I nformation to  Discover  Rel iabi l i t y  Data 
on the I nternet

The Reliability Information Analysis Center (RIAC) 
is a DoD Information Analysis Center sponsored by 
the Defense Technical Information Center

RACRACi
The Reliability Information Analysis Center (RIAC) 

is a DoD Information Analysis Center sponsored by 

the Defense Technical Information Center

FIRST QUARTER 2010

VOLUME 18, NO. 1

02  ›  Two Recommendations for the Acquisition and Growth of Reliable 

Systems
10  ›  Introducing Unanticipated and Unexpected Failures to the Crow 

Extended Continuous Evaluation Reliability Growth Model

20  ›  Measuring Failure Rate by Testing

J O U R N A L

OF THE RELIABILITY  INFORMATION ANALYSIS CENTER

Name Position/Title

Organization Offi  ce Symbol

Address City                                                      State                                   Zip

Country Email

Phone Fax

My Organization is:                Army    Navy    Air Force    Other DoD/Government    Industry    Academic    Other 
  

I need help with a reliability, maintainability, quality, supportability, or interoperability problem.         Please contact me

CONTACT INFORMATION (OPTIONAL)

Please fax completed survey to 
315.351.4209 – ATTN: Journal EditorRACRACi

http://theRIAC.org    ―    31



Reliability Information Analysis Center
100 Seymour Road  |  Suite C101  |  Utica, NY 13502-1348

RACRACi PRSRT STD
U.S. POSTAGE

PAID
SYRACUSE, N.Y.

PERMIT NO. 3893

› Online Product Store 

› RMQSI Library

› Technical Answers

› The RIAC Journal

› Upcoming Training Courses

› What’s New at RIAC

The RIAC’s “Desk Reference” is a Virtual Knowledge Base of reliability know-how 
on best practices, analyses and test approaches.

Save time and money at the RIAC’s online store where you can browse, order, 
and immediately download electronic versions of most of the RIAC’s products.

THE RIAC ONLINE


