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Current Time: 

When Markov Analysis ? 

Vito Faraci Jr. 

10:08 AM 
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 Vito Faraci Jr. 

 Mathematician by education, engineer by trade. 

 Worked for small consulting company on L.I. for past 16 years presenting   

   seminars to FAA on Probability, Reliability, FTA, FMEA, & Markov 

       Analysis (MA). 

 Have given MA lectures to Lockheed Martin System Safety Groups, Sandia  

   National Labs, and to reliability engineers at Bombardiere Aircraft Co.  

 Have several papers published by RIAC and System Safety Society on  

   Reliability and MA. 

 

  

 

 

Personal Info  
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Agenda 

       Subject                                                                       Sheet  #        Time (approx) 

 Introduction                                                                          5         2 min 

 Failure Rate vs. Failure Logic                                              8                    2 min 

 Combinatorial  vs. Non-combinatorial Logic                         10                     3 min          

 FTA vs. MA   Advantages / Disadvantages                         14         5 min 

 Answer to “Why Markov?”                                                 19                   1 min 

 Answer to “When Markov?”                    20                   2 min 

 Time Failure Dependency                                                    21      8 min 

 More about System Reliability                 32                   2 min 

 Markov Analysis basics                               34                   5 min 

 State Logic Compared with And/Or Logic                          40                   5 min 

  Standby                                                            47                   5 min 

 Sequence Failure                                    52                   2 min 

 State-Dependent Behavior              55                   2 min 

 Reconfiguration                                                  61                   3 min 

 Pf Approximations                                                               65                   1 min 

 Summary                                                                              69                   2 min 

 Questions                                                                              72                 10 min 
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  Acronyms  

 ARP – Aerospace Recommended Practice 

 Combo – Combinatorial Logic 

 DE – Differential Equation 

 FAA – Federal Aviation Administration 

 FR – Failure Rate 

 FTA – Fault Tree Analysis 

 MA – Markov Analysis 

 Non-combo – Non-combinatorial Logic 

 Pf  – Probability of Failure 

 RBD – Reliability Block Diagram 

 ROF – Required Order Factor 

 SDE – Simultaneous Differential Equations 

 SSD – State Sequence Diagram 
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Fault Tree Analysis (FTA) was introduced in 1962 at Bell Labs, and is the 

most commonly used tool for calculating System Reliability and 

qualitative and quantitative risk analyses.  
 

For a period of time its limitations were unquestioned but were known 

only to a few. Starting in the early 80s, a group of NASA mathematicians 

performed some impressive studies that clearly exposed a very subtle 

limitation. In an effort to overcome this limitation, NASA developed 

several algorithms, and described in detail an approach using Markov 

Analysis (MA), designed not to replace, but to support FTAs.  
 

With respect to System Reliability , the integration of MA with FTA has 

been a giant step forward. Engineers can now solve more accurately a 

much larger set of “Risk” problems than they could before.  

 

 

Introduction (Background Info) 
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Introduction cont. 

MA was introduced in 1907 by a Russian mathematician by the name of 

A. A. Markov. It is interesting to note that although this knowledge has 

been around for some time, the engineering community had waited until 

the 1980s to taken advantage of this science. For example,  

  

a) NASA has been employing Markov methods for Probabilistic Risk   

    Assessments (PRA) for the Shuttle systems, and  

b) FTA and Reliability Software manufacturers have integrated Markov  

     techniques into their Risk Assessment SW Programs.  

 

It is this author’s opinion, that due to a lack of documentation written in a 

clear common language, knowledge of  Markov as applied to Reliability 

still remains a little “sketchy” within the engineering community. 
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Introduction cont. 

 
 

• Explain when and why Markov methodology should be used 
 

• Emphasis on 

• qualitative aspect (the logic) rather than  

• quantitative (mathematical definitions, axioms, theorems, and   

   equations) which is a subject on its own. 

 

• To fully understand the when and why of Markov, one must first  

   have a good understanding of:  

a)  the difference between failure rate and failure logic, and 

b)  the difference between combinatorial and non-combinatorial 

logic which crops up so very often in the world of Probability  
 

 

Objective: 
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Failure Rate vs. Failure Logic  

Failure Rate vs. Failure Logic  

The study of Markov with respect to Reliability, requires that the 

difference between failure rate and failure logic be absolutely 

clear. The next slide will define and help clarify the distinction.  
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Failure Rate vs. Failure Logic cont.  

Failure Rate 

A failure characteristic of an individual component or system. It is a 

measure of the number of failures that occur within a unit interval of 

time. A failure rate can be constant (does not vary with time), or non-

constant (varies with time).  

 

Failure Logic 

Deals with the relationship of failures of 2 or more devices that occur 

in a system. Failure logic can be combinatorial or non-combinatorial. 

 
Examples of Failure Logic 

What is the probability that components A and B both fail? 

What is the probability that A fails and B does not? 

What is the probability that A and B both fail, and A fails before B? 
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Combinatorial  vs. Non-combinatorial Logic  

Combinatorial  vs. Non-combinatorial Logic  

The study of Markov with respect to Reliability, also requires an 

understanding of combinatorial and non-combinatorial logic which 

will be explained on the next few slides.   
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  Combinatorial Logic 

 Two or more input states define one or more output states. Output 
states are related by defined rules that are independent of previous 
states.  

 Logic depends solely on combinations of inputs 

 Time is neither modeled or recognized 

  Outputs change when inputs change irrespective of time 

 Output is a function of, and only of, the present input 

 

 

 
 

  

Combinatorial  vs. Non-combinatorial Logic cont.  

Simply stated: (Can be taken as a definition) 

  Combinatorial logic is any logic that can be expressed using      

  And Gates & Or Gates (Boolean Algebra)  
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   Non-combinatorial Logic  

 Logic of output(s) depends on combinations of present input states, 

and combinations of previous input states.  
 

 

    Excerpt from Wikipedia 
 

     In digital circuit theory, sequential logic is a type of logic circuit whose 

output depends not only on the present input but also on the history of the 

input. This is in contrast to combinational logic, whose output is a function 

of, and only of, the present input. In other words, sequential logic has state 

(memory) while combinational logic does not. 
 

   
 

       

  

Combinatorial  vs. Non-combinatorial Logic cont.  

Simply stated: (Can be taken as a definition) 

  Non-combinatorial logic is any logic that cannot be expressed using       

  And Gates & Or Gates (Boolean Algebra) 
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Quick Answer to “Why Markov?” 

In Reliability the role of Markov is to obtain more accurate 

System Reliability calculations in places where FTA has 

difficulty.  

 

However, there are some Markov disadvantages that were 

cited by NASA and other sources that will be presented in 

the next few slides. 
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FTA vs. MA   Advantages / Disadvantages 

FTA  vs. MA   Advantages / Disadvantages 
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   Fault Tree Advantages: 

 

 Acts as a visual tool which can be used to pinpoint system 
weaknesses. 

 

 Exhibits clear representation of logical processes that lead to a 
system or sub-system failure (clear qualitative representation of 
failure propagation). 

 

 Reveals relatively simple equations for Pf calculations yielding 
quantitative analyses that do not require high powered math. 

 

 Proves to be a very effective tool for the fault isolation process.  

 

 

 

 
         
 

FTA vs. MA   Advantages / Disadvantages cont. 
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   Fault Tree Limitations: (From ARP 4761 Issue 1996-12) 

 

 Difficult to allow for transient & intermittent faults or standby 
systems with spares. 

 

 If a system has many failure conditions, separate fault trees may need 
to be constructed for each one. 

 

 Difficult to represent systems where failure rates or repair rates are 
state dependent (change between states). 

 
         
 

FTA vs. MA   Advantages / Disadvantages cont. 
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Excerpt from NASA Ref. Publication 1348: 
 

Traditionally, the reliability analysis of a complex system has been 

accomplished with combinatorial mathematics.  The standard fault-tree 

method of reliability analysis is based on such mathematics.  

Unfortunately, the fault-tree approach is somewhat limited and 

incapable of analyzing systems in which reconfiguration is possible. 

Basically, a fault tree can be used to model a system with: 
 

Only permanent faults (no transient or intermittent faults) 

 No time failure dependencies  

 No sequence failure dependencies  

 No state-dependent behavior  

 No reconfiguration 

FTA vs. MA   Advantages / Disadvantages cont. 
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From ARP4761 Issue 1996-12 
  

 MA does not have these limitations. 
 

 Sequence dependent events are included and handled naturally. 
 

 Covers a much wider range of system behaviors. 
 

     

 

 

 

FTA vs. MA   Advantages / Disadvantages cont. 
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This following summary answers the “Why Markov?” question with a  

little more detail 
 

 Fault Tree Analysis (FTA) –Handles combinatorial type problems 

both qualitatively and quantitatively extremely well. However FTA 

has difficulty with non-combinatorial problems in both areas. 
 

 

 Markov Analysis (MA) – Handles non-combinatorial as well as 

combinatorial problems. However, not quite as intuitive as FTA, and 

requires higher power mathematics for the quantitative analyses. 
 

        

FTA vs. MA Summary 
Answer to “Why Markov?” 
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Close examination of the above NASA 1348 and FAA excerpts 

reveals that “Markov” techniques should be used when non-

combinatorial logic is encountered. Most commonly for the 

following 4 situations which will be further discussed in this 

presentation.  
 

 Standby systems with spares 

 Sequence failure dependencies 

 State-dependent behavior  

 Reconfiguration 
 

 

       

Answer to “When Markov ?”  

Note:  

NASA 1348 also stated that FTA has difficulty with time failure 

dependencies, but it doesn’t appear on the above list. 
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Time Failure Dependency  

Time Failure Dependency  

Explanation of why it doesn’t appear on the Markov list. 
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NASA 1348 also stated that FTA has difficulties handling time 

failure dependencies. However, this problem has nothing to do with 

failure logic. This problem is simply due to the fact that most FTA 

algorithms are not written to handle the more complicated math 

required for devices that have time failure dependencies i.e. non-

constant failure rate devices.  

       

Time Failure Dependency 
NASA 1348 Clarification  

Primary component failure rates, whether constant or non-constant, 

have no effect on logic of failure or Markov requirements. 

For purposes of clarification, time failure dependency will be 

discussed in more detail in the next few slides.  
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Failure characteristics of any primary component will fall into one of 

two categories, either constant failure rate or non-constant failure rate. 

Components whose failure rates vary with time are said to have a 

“Time Failure Dependency” . 

 

Time Failure Dependency cont.  
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Failure characteristic of a 

constant failure rate device 

 

probability of success  =  
 

probability of fail  = 
 

 

where e = 2.71828, 

 λ = constant failure rate,  

 t = time.  
 

                                           

                                       Transition Probabilities 
 

Note:                                                      

Percentage of failures are always the same 

(constant) for each time interval  t. 

100

90 10

1981

1

27.172.9

P

1-100

x0.9n

100x

0.9n

1 - P

Fail State

No Fail

t = 0

1

1

P

P

P

1 - P

1 - P

1 - P

t

t t 

t2 t 

t3 t 

tn t 

0.9  e P t  

P1 F 

Time Failure Dependency cont. 

Constant Failure Rate Characteristic 
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The following is an example of a probability of failure (Pf) equation of a 

non-constant failure rate device. In this particular case, the device 

exhibits a “normal” distribution of failure: 

where  

u = mean time to failure,  

s = standard deviation,  

hl = hours previously logged,   

t = time. 

x = dummy variable 
 

 

Note: 

The above equation is “non-integrable” which presents an additional computational 

challenge when calculating Pf. 

 

dx  e 
2

1
     P

t

0

2s 2

2hl)u(x

f 












 



s

Time Failure Dependency cont. 

Non-Constant Failure Rate  
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Time Failure Dependency cont. 

Constant FR vs. Non-Constant FR 

Comparison of a Constant and a Non-constant Failure Rate Device with same MTBF 

Probability of failure vs. Time graph  
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Time Failure Dependency 
Example of Mixed Failure Rate System   

System Reliability is defined to be the “probability that a system will 

perform its specified function successfully within a specified period of 

time.”  
 

Consider the following system comprised of a mechanical component 

in series with an electrical component.  

 

 

t01.0
e

t

0

2s2

2)100x(

m e 1    (t)P                 dxe
2s

1
    )t(P 







 

Mechanical Electrical

Pm  (Mechanical)                                         Pe  (Electrical)  

     RBD                                                           Logic Diagram   

Pf   
Pm  

Pe  

 Pf (System)  =  Pm (t) + Pe (t) − Pm (t) ∙ Pe (t)   
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Time Failure Dependency  
 Example of Mixed Failure Rate System cont.  

When integrating devices with mixed failure rates in a combinatorial 

situation, all that is required is basic Boolean Algebra or what is 

called “and/or” logic. There is no need for Markov or any other 

special techniques.  

 Pf (System)  =  Pm (t) + Pe (t) − Pm (t) ∙ Pe (t)     (Boolean Expression) 

Major point of previous slide:   
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Constant & Non-constant FR Devices in Series 

Probability of failure vs. Time graph  

Time Failure Dependency cont. 
Example of Mixed Failure Rates & Combinatorial  
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Time Failure Dependency cont. 
State Sequence Diagram (SSD) 

A deeper understanding of the qualitative aspects (the logic) for 

solving System Reliability problems can be obtained with a useful 

tool known as a State Sequence Diagram (SSD) as illustrated next.    
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N0
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t)B)(n(At)))(1B)((nA(e1 

State Sequence Logic for 2 Devices in Series 
State Sequence Diagram (SSD) 

Ni = probability of success at t = i∆t 

Fi = probability of failure at t = i∆t 

A(t) = Failure Rate of Component A 

B(t) = Failure Rate of Component B  

Expressions = transition probabilities 
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System Reliability concentrates on math modeling the failure 

characteristics of a system. This is accomplished by deriving failure 

characteristics (math models) of each individual component, and then 

integrating these individual component failure characteristics based 

on component relationships operating within the system. This science 

relies very heavily on applied mathematics, and recall that it has its 

qualitative and quantitative aspects.  

 

The rest of this presentation is devoted to the study of this subject. 

 

 

More about System Reliability  
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Failure Logic as well as Failure Rates must be considered: 

When calculating System Reliability, not only must failure rates of primary 

components be considered, but also the system’s failure logic. 
 

Example: (Consider a simple system comprised of 2 components A and B.)  

What is the probability of both A and B failing and A failing before B? 

 

Important note: 

The failure rate of primary a component can be constant or non-constant. 

This variable by itself has no effect on a system’s failure logic, and does 

not determine requirements for Markov.  

 

 

 

More about System Reliability cont.  
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Markov Analysis Basics 

Markov Analysis Basics 

A quick overview of some Markov Basics should help with 

further understanding of the logic involved. 
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Markov Analysis Basics 

     If a system or component can be in one of two states (i.e. failed, non-

failed), and if we can define the probabilities  associated with these 

states on a discrete or continuous basis, the probability of being in one 

or other at a future time can be evaluated using a state-time analysis. 

In reliability and availability analysis, failure probability and the 

probability of being returned to an available state are the variables of 

interest. The best known state-space technique is Markov Analysis.  
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 State Diagram represents various system states 
 

 Transition rate is function 

     of failure or repair rate 
 

 States must be finite in 

     number 
 

 States are mutually exclusive 
 

 The sum of the probabilities 

     must equal 1 

 

  Mutually Exclusive – System can never be in any more than one state at any given time 

 

P
FU

State

(1) P
LT

State

(3)

P
ST

State

(2)

P
LOTC

State

(5)

P
DLT

State

(4)

2L
ST

U
ST-REPAIR

2L
LT

L
ST-LOTC-AVE

L
LT-LOTC-AVE

L
ST

L
LT

U
DLT-REPAIR

U
LOTC-FU

U
LT-REPAIR

100x10 -6

Markov Analysis Basics cont. 
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Markov Analysis Basics    
Few words on the Quantitative Aspect 

The following is a typical state taken from a State Diagram with n input transitions with 

failure rates Ij, and m output transitions constant failure rates Ok. 

 

to other states from other states 

Unfortunately Pi cannot be calculated immediately. Precise calculations of Pi can at times 

be very difficult and may require advanced topics from Calculus and even Advanced 

Calculus. Topics such as solutions of sets of Simultaneous Differential Equations (SDE), 

Matrix Algebra,  and/or Convolution Integrals which are all subjects by themselves.  

However, the following is a quick and simple illustration of one such quantitative 

approach using SDEs.  

P
i

I
0

I
1

I
j

I
n

O
0

O
1

O
k

O
m

Pi  = probability of being in state I 
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Each state has a corresponding DE. The DE corresponding to a typical state is:  

 

P(i) 

m

1 k 

kOP(j)

n

1  j

jI  
dt

dP(i)























 

Note: Transitions into a state result in positive terms in the DE, while 

transitions leaving a state yield negative terms. 

For the sake of simplifying notation let Pi = P(i). 

Markov Analysis Basics    
Few words on the Quantitative Aspect  cont. 

to other states from other states 
P

i

I
0

I
1

I
j

I
n

O
0

O
1

O
k

O
m
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Transitions into a state result in positive terms in the DE, while transitions leaving 

a state yield negative terms. 

Markov Analysis Basics cont.   
Few words on the Quantitative Aspect  cont.   

Example : Two devices in Parallel (constant failure rates assumed)  

32
4 dPcP  

dt

dP
1

1 b)Pa(  
dt

dP


21
2 cP aP  

dt

dP


31
3 dPbP  

dt

dP


Full 

 Up 

A 

B 

A, B 

a 

b 

c 

d 

(1) 

(2) 

(3) 

(4) 

Pi  =  Probability of being in State i 

Caution: This method is not reliable for non-constant failure devices. 
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State Logic Compared with And/Or Logic 

State Logic Compared with And/Or Logic 

Recall non-combinatorial logic cannot be expressed using  

Logic Gates and therefore State Diagrams are used instead 

to capture the logic. 
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As mentioned before Markov handles combinatorial as well as non-

combinatorial problems.  

Although there is no need of Markov for solving combinatorial type 

problems, (FTA handles them well enough) the next few slides will 

demonstrate several examples for the sake of illustration and 

comparison. 

 

Note:  

The following comparison examples are limited to “constant failure rate” type 

problems. Quantitative solutions to “non-constant failure rate” type problems may 

require other math methods.  

 

State Logic Compared with And/Or Logic 
Combinatorial Type Problems 
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State Logic Compared with And/Or Logic 
2 Components in Series  (Combo Type) 

Two black boxes start operation at the same time. Box 1 has failure rate a and Box 2 
has failure rate b. Successful system operation requires that both boxes be working.  

Find Pf  =  Probability of System Failure. 

 

 

                          State Diagram                                                      And/Or Logic 

                                                                                                    

 

   

 

 

 

 

 

  

 

Note: P(n) = Probability of State (n) 

  

(1) (2)
a + b

Full Up
System Fail

(Box A or B Failed)

P
f

1-e-at

1-e-bt

dP(2)/dt  =  (a+b)P(1)   

Pf = P(2) = 1– e–(a+b)t 

Pf = Pa + Pb − Pa ∙ Pb    

Pf = 1– e–(a+b)t 
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Three black boxes start operation at the same time. Boxes A, B, and C  have failure 

rates a, b, and c respectively. Successful system operation requires that all three boxes 

be working. Find Pf  the Probability of System Failure. 
  

                       State Diagram                                                               And/Or Logic 

                                                                                                                 

                                    

(1) (2)
a + b + c

Full Up Sy stem Fail

P
f

1-e-at

1-e-bt

1-e-ct

State Logic Compared with And/Or Logic  
3 Components in Series (Combo Type) 

     dP(2)/dt  =  (a+b+c)∙P(1)   

  Pf = P(2) = 1– e–(a+b+c)t 

Pf = Pa + Pb + Pc − Pa ∙ Pb − Pa ∙ Pc − Pb ∙ Pc + Pa ∙ Pb ∙ Pc    

  Pf = 1– e–(a+b+c)t 
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State Logic Compared with And/Or Logic  
2 Components Active Redundant (Parallel) (Combo Type) 

Two black boxes start operation at the same time. Box A has failure rate a and 

Box B has failure rate b. Successful system operation requires that Box A or Box 

B or both be working. Find Pf  the Probability of System Failure. 

 

   

                State Diagram                                                           And/Or Logic 

                                                                                                                    

         

Full 

 Up 

A 

B 

A, B 

a 

b 

b 

a 

(1) 

(2) 

(3) 

(4) 

                    

P
f

1-e-at

1-e-bt

Pf = (1– e–at)(1– e–bt)       dP(4)/dt  =  bP(2) + aP(3)  

  Pf = P(4) = (1– e–at)(1– e–bt) 

Note:  

Failure rates are not effected by state changes.  
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Three black boxes start operation at the same time. Box A, B, and C have failure 

rate a, b, and c respectively. Successful system operation requires that Box A, B, or 

C be working. Find Pf  the Probability of System Failure. 

 
  

                                      State Diagram                                                               And/Or Logic 

                                                                                                                               

Full 

 Up 
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C 

(1) 

(2) 

(3) 

(4) 
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A, C 

A, B 

B, C 

(5) 

(8) 

A, B, C 
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a 

c 

c 
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b 

a 

(7) 

(6) 

             

P
f

A

B

C

    A = (1– e–at) 

    B = (1– e–bt) 

    C = (1– e–ct) 

Pf = (1– e–at)(1– e–bt) (1– e–ct) 

 

State Logic Compared with And/Or Logic  
3 Components Active Redundant (Parallel) (Combo Type) 

       dP(8)/dt  =  cP(5) + bP(6)  + aP(7)   

 Pf = P(8) = (1– e–at)(1– e–bt) (1– e–ct) 
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When Markov?  

  

 Standby systems with spares 

 Sequence failure dependencies 

 State-dependent behavior  

 Reconfiguration 
 

 

 

 When Markov? For the following situations: 
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Standby  

  

 Standby systems with spares 
 Sequence failure dependencies 

 State-dependent behavior  

 Reconfiguration 
 

 

 

 When Markov? For the following situations: 
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Solutions of non-combinatorial problems require different techniques 

other than traditional combinatorial logic such as that found in FTAs. 

In particular one of the simplest non-combinatorial type problem that 

has intrigued mathematicians is the classic “Standby Problem”.  

 

 

 

Standby cont.  
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        State Diagram                                                 And/Or Gates    

                                                                                             ?                             

     

Box A has failure rate a and Box B has failure rate b. Box A is turned on while 

Box B remains powered off in standby mode. Immediately upon detection of 

Box A failure, Box B is turned on. Calculate the probability that both boxes are 

failed. (Assume a perfect switch.) 
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fail
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a b
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Standby cont.  

Pi  = probability of State i 
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Standby cont.  

Deriving solutions (quantitative aspect) for non-combinatorial 

type problems, whether failure rates are constant or not, is 

somewhat non-trivial and is a subject for another paper. However 

again for the sake of a deeper understanding of the qualitative 

aspect, a State Sequence Diagram (SSD) may be helpful.    
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N0

N1 A1

A2N2 B2

A3N3 B3
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A Failed

B Failed

No Fails

t = 0

t

t t 

t2 t 

t3 t 

tn t 

t)A(e 

t)A(2t)A(e 

t)A(3t)A(2e 

t)A(nt))1A((ne 
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t)A(2t)A(e1 

t)A(3t)A(2e1 
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1tp1
1tp

2tp

1ntp 

2tp1

1ntp1 

Standby cont. 

State Sequence Diagram for “Standby” 

tpi = transition probability 

tpi = eB(i∆t)-B((i+1)∆t) 

A(t) = Failure Rate of Component A 

B(t) = Failure Rate of Component B 
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Sequence Failure  

  

 Standby systems with spares 

 Sequence failure dependencies 
 State-dependent behavior  

 Reconfiguration 
 

 

 

 When Markov? For the following situations: 
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Two components are in operation. Find the probability that both Boxes A and B 

fail and that Box A fails before Box B.  Also find the probability that both Boxes 

fail and that Box B fails before Box A. 

                   State Diagram                                            And/Or Gates   

                                                                               ? 

atb)t(aatbt

btb)t(abtat
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ee 
ba

a

ba

b
  P (5)     e)e(1  P (3)

ee 
ba

b

ba

a
  P (4)     e)e(1  P (2)

  ee   P (1)

























Full

Up

A

fail

B

fail

A,B

fail
a

b

b

a

(1)

(2)

(3)

(4)

B,A

fail

(5)

Sequence Failure cont.  
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BA1
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Sequence Failure  
State Sequence Diagram for “Sequence Failure” 
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State-Dependent Behavior  

  

 Standby systems with spares 

 Sequence failure dependencies 

 State-dependent behavior  
 Reconfiguration 
 

 

 

 When Markov? For the following situations: 
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State-Dependent Behavior cont.  
 

Important note:  

Whenever a failure rate changes (regardless if the failure rate is 

constant or not) due to a change in stress, temperature, 

environment, etc. during a mission, it is considered a change of 

state, and the problem becomes non-combinatorial. 
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State-Dependent Behavior cont.  
 

Combo Example (Failure rates do not change from state to state) 

Two black boxes start operation at the same time. Box A has failure rate a, and 

Box B has initial failure rate b. Successful system operation requires that Box A 

or Box B or both be working.  

Find Pf  the Probability of System Failure. 
 

 

Non-Combo Example (Failure rate(s) change from state to state) 

Two black boxes start operation at the same time. Box A has initial failure rate a, 

and then has failure rate a’ when Box B fails due to increase stress.  Box B has 

initial failure rate b, and then has failure rate b’ when Box A fails. Successful 

system operation requires that Box A or Box B or both be working.  

Find Pf  the Probability of System Failure. 
 

   

         

                    

A

B

RBD 
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     State Diagrams                                                        Equations 

         

Full 

 Up 

A 

B 

A, B 

a 

b 

b ‘ 

a ’ 

(1) 

(2) 

(3) 

(4) 

                    

 

 
)]3(P)2(P)1(P[1    )4(P

ee
' aba

b
    )3(P

ee
' bba

a
    )2(P

e    )1(P

t)ba(t ' a

t)ba(t ' b

t)ba(





















Full 

 Up 

A 

B 

A, B 

a 

b 

b 

a 

(1) 

(2) 

(3) 

(4) 

)e1()e1(    )4(P

)e1(e    )3(P

)e1(e    )2(P

ee    )1(P

btat

btat

atbt

btat

















 Combo 

Non-Combo 

Note: Failure rates change from state to state but remain constant while in each state. 

State-Dependent Behavior 
Constant Failure Rate Example  
 

Note: The combinatorial nature of solution equations above. 

No Stress Change 

Stress Change 
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 State Diagrams                                                        Equations 

         

Full 

 Up 

A 

B 

A, B 

a 

b 

b’ 

a’ 

(1) 

(2) 

(3) 

(4) 
                    

Full 

 Up 

A 

B 

A, B 

a 

b 

b 

a 

(1) 

(2) 

(3) 

(4) 

))t(R1())t(R1(    )4(P

))t(R1()t(R    )3(P

))t(R1()t(R    )2(P

)t(R)t(R    )1(P

ba

ba

ab

ba









 Combo 

Non-Combo 

))t(R1())t(R1(    )4(P

))t(R1()t(R    )3(P

))t(R1()t(R    )2(P

)t(R)t(R    )1(P

ba

ba

ab

ba









State-Dependent Behavior 
Non-constant Failure Rate Example  
 

Note: In the Combo case, P(i) equations are simply sums and products of component   

          Reliability equations whether failure rates are constant or not. 

Note: In the Non-combo case, P(i) equations are not simply sums and products of  

          component Reliability equations except for P(1). 

No Stress Change 

Stress Change 
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2 Devices in Parallel  
State Sequence Diagram for 2 Devices in Parallel 

N0

A1

t = 0

B1 AB1N1

A2 B2 AB2N2

A3 B3 AB3N3

An Bn ABnNn

No Fails

t

t t 

t2 t 

t3 t 

tn t 

N1N0, A1N0, AB1N0,B1N0,

N2N1, A2N1,

B2B1,
AB2AB1,

A2A1,
AB2N1,

AB2A1,
AB2B1,

B2N1,

AB3AB2,

AB3B2,
B3B2,

ABn1,-ABn

N3N2, N2,A3
N2,B3

N2,AB3

A2,AB3

A2,A3

Nn-1,Nn Nn-1,An

Nn-1,Bn

Nn-1,ABn

An-1,ABn
Bn-1,ABn

An-1,An

Bn-1,Bn

Transition Probabilities 

  

N0, N1       e-(A+B)Ät 

N0, A1       e-BÄt (1-e-AÄt) 

N0, B1       e-AÄt (1-e-BÄt) 

N0, AB1    (1-e-AÄt) (1-e-BÄt) 

N1, N2       e(A+B)Ät -(A+B)2Ät 

N1, A2       eBÄt –B2Ät (1-eAÄt –A2Ät) 

N1, B2       eAÄt –A2Ät (1-eBÄt –B2Ät) 

N1, AB2     (1-eAÄt –A2Ät) (1-eBÄt –B2Ät) 

A1, A2        eBÄt –B2Ät 

A1, AB2     1-eBÄt –B2Ät 

B1, B2        eAÄt –A2Ät 

B1, AB2     1-eAÄt –A2Ät 

AB1, AB2  1 

N2, N3        e(A+B)2Ät -(A+B)3Ät 

N2, A3        eB2Ät –B3Ät (1-eA2Ät –A3Ät)  

N2, B3        eA2Ät –A3Ät (1-eB2Ät –B3Ät)  

N2, AB3     (1-eA2Ät –A3Ät )(1-eB2Ät –B3Ät)  

A2, A3        eB2Ät –B3Ät  

A2, AB3      1-eB2Ät –B3Ät 

B2, B3         eA2Ät –A3Ät  

B2, AB3      1-eA2Ät –A3Ät  

AB2,AB3    1 

Nn-1, Nn     e(A+B)(n-1)Ät -(A+B)nÄt 

Nn-1, An     eB(n-1)Ät –BnÄt (1-eA(n-1)Ät –AnÄt) 

Nn-1, Bn     eA(n-1)Ät –AnÄt (1-eB(n-1)Ät –BnÄt) 

Nn-1, Abn   (1-eA(n-1)Ät –AnÄt )(1-eB(n-1)Ät –BnÄt) 

An-1, An      eB(n-1)Ät –BnÄt 

An-1, Abn    1-eB(n-1)Ät –BnÄt 

Bn-1, Bn       eA(n-1)Ät –AnÄt  

Bn-1, Abn     1-eA(n-1)Ät –AnÄt  

ABn-1, Abn  1 
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Reconfiguration  

  

 Standby systems with spares 

 Sequence failure dependencies 

 State-dependent behavior  

 Reconfiguration 
 

 

 

 When Markov? For the following situations: 
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A system is made up of three computers with each computer having failure 

rate a. Upon detection of failure of any one of the three, the remaining two 

reconfigure themselves at rate b, and continue operating. Upon detection of 

a second failure, the remaining one reconfigures itself at rate b, and 

continues operating until it fails. Note that if a computer should fail before a 

reconfiguration is completed, the system fails. Find Pf .  

 

No

Fails
1 Fail

Sy stem

Fail

2a3a

Recon

f or 2
2 Fail

Sy stem

Fail

a2a

Recon

f or 1

Sy stem

Fail

a

b

b

(1) (2) (3)

(4)
(5) (6)

(7)
(8)

Reconfiguration 
 Reconfiguration Example (Non-Combo Type) 
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A Black Box has constant failure rate a and a constant repair rate b. Upon 

detection of a failure, the Box goes into a repair process and put back on line. 

Calculate the probability that the Box will be available. 
 

                 State Diagram                                                FTA   

                                                                                          ? 

                     

              
b)t(ae

ba

a
 

ba

a
  P (2)

b)t(ae 
ba

a

ba

b
  P(1)

















Reconfiguration 
Component with Repair Example (Non-Combo Type) 

Full

Up
Fail

a

b

(1) (2)
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A0

A1 B1

B2A2

B3A3

BnAn

A Failed

No Fails

t = 0

t

t t 

t2 t 

t3 t 

tn t 

1a

1a1

1b

2b

1nb 

1b1

2b1 

1nb1 

2a1

3a1

na1 

2a

3a

na

iesprobabiliton   transiti  ib  , ia 

Reconfiguration 
SSD for Component with Repair  
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A word of caution about Pf approximations: 

 

With respect to System Reliability calculations, it must be stated 

that for the sake simplifying the mathematics involved, many times 

approximations are used. For example approximations are used to 

simplify:  

 

A) failure rate equations, and 
 

B) failure logic equations. 

Pf  Approximation Techniques   
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An example of a failure rate equation simplification : 

t01.0
f e 1    P        

 







t

0

2s2

2)100x(

f dxe
2s

1
    P       

Pf  equations for   

non-constant failure  

rate devices like this    

are replaced with this    

Pf  Approximation Techniques  
Failure Rate Approximation  




t

0

f pdf(x)dx P

A
p

p
li
e
d

 R
e
li
a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a
 2

0
1
1

 

Vito Faraci Jr. Slide Number: 67 Session # Track #  

A 

B before C 

B C 

(Enable) Event A will occur only if 

event B occurs and 

subsequently event C 

occurs. 

Example from  

ARP 4761  

Issue 1996-12 

An example of failure logic simplification: 
 

 

Cleverly adjusted Boolean expressions are used to approximate 

solutions (logic aspects) of non-combinatorial problems. 

Pf  Approximation Techniques cont. 
Failure Logic Approximation  
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Pf  Approximation Techniques cont.  

 Caution must be taken because Pf  approximation techniques can 

lead to calculations that may be greater than or less than actual. 
  

 When dealing with systems whose failures are not safety critical, 

Pf  approximations may be “good enough”.  
 

  Markov techniques very often will require extra time and work.  
 

 However when safety critical failures are involved, Pf  

calculation accuracy will have a high priority, and the use of 

Markov may have to be considered. 
 

Points to Consider:  
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Summary  

Summary  
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Facts to keep in mind: 

 FTA exhibits a clear representation of any combinatorial logic process, and 

capable of handling both constant and non-constant failure rates.  

 Mixing non-constant with constant failure rate items may require higher math, 

but  has no effect on a system’s failure logic.  

 MA is a supplement to, and not a replacement for FTA.   

 FTA cannot express non-combinatorial logic processes, although FTAs have 

been used to calculate approximations in the past. 

 With respect to Reliability, Markov can be thought of as a buzz word for various 

methodologies used for solving non-combinatorial logic problems. 

 Markov techniques can also solve combinatorial problems. (Not recommended) 

 State diagrams are used to represent non-combinatorial logic. 

 With respect to non-combo problems, Markov adds qualitative and quantitative 

accuracy over FTA, but requires more work. 

 Approximation techniques can lead to Pf  calculations that can be more or less 

conservative than actual. Extra care must be taken when dealing with safety 

critical systems. 

 
 

Summary cont. 
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Summary cont. 

Markov Approach (for systems exhibiting non-combinatorial logic): 

 Create a system RBD and partition combinatorial and non-combinatorial sections. 

       (may be challenging – Differences between Combo and Non-combo problems can be very subtle) 

 Use and/or logic (standard FTA methods) for all combinatorial sections. 

 Create state diagrams for all non-combinatorial sections. 

 Determine quantitative solution approach from state diagrams of each section. 

 Calculate solutions set to determine probabilities.  

      (May be challenging – Solutions methods are subjects of their own) 

 Integrate solutions of all sections and determine probability of all undesirable 

states (events). 
 

Markov Limitations 

 Markov quantitative aspects can become difficult when a large number of states, 

or when non-constant failure rates are involved. 
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Where to Get More Information 

 SAE ARP 4761 Issue 1996-12 

 Engineering Reliability  Fundamentals & Applications – R. Ramakumar 

 System Reliability Theory – A. Hoyland & M. Rausand 

 Probabilistic Risk Assessment & Management for Engineers & Scientists 

      – H. Kumamoto & E. Henley 

 Modeling for Reliability Analysis – Jan Pukite & Paul Pukite 

 Mil-Hdbk 338A – Electronic Reliability Design Handbook 

 Mil-Std 756B – Reliability Modeling and Prediction 
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Contact Information 

 

vfaraci02@gmail.com 
 

631-977-2597 
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Questions 

 

 

Thank you for your attention. 

 

Do you have any questions? 


