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Current Time: 

Why Markov Analysis ? 

Vito Faraci Jr. 

10:08 AM 
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 Vito Faraci Jr. 

 Mathematician by education, engineer by trade. 

 Worked for small consulting company on L.I. for past 15 years presenting   

   seminars to FAA on Probability, Reliability, FTA, FMEA, & MA. 

 Have given MA lectures to Lockheed Martin System Safety Groups, Sandia  

   National Labs, and to reliability engineers at Bombardiere Aircraft Co.  

 Have several papers published by RIAC and System Safety Society on  

   Reliability and MA. 

 

  

 

 

Introduction (Personal Info)  
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Fault Tree Analysis (FTA) was introduced in 1962 at Bell Labs, and is the 

most commonly used tool for qualitative and quantitative risk analyses.  
 

For a period of time its limitations were unquestioned but were known 

only to a few. Starting in the early 80s, a group of NASA mathematicians 

performed some impressive studies that clearly exposed a very subtle 

limitation. In an effort to overcome this limitation, NASA developed 

several algorithms, and described in detail an approach using Markov 

Analysis (MA) , designed not to replace, but to support FTAs.  
 

With respect to Reliability , the integration of MA with FTA has been a 

giant step forward. Engineers can now solve more accurately a much larger 

set of “Risk” problems than they could before.  

 

 

Introduction (Background Info) 
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Introduction cont. 

MA was introduced in 1907 by a Russian mathematician by the name of 

A. A. Markov. It is interesting to note that although this knowledge has 

been around for some time, the engineering community had waited until 

the 1980s to taken advantage of this science. For example,  
  

a) NASA has been employing Markov methods for Probabilistic Risk   

    Assessments (PRA) for the Shuttle systems, and  

b) FTA and Reliability Software manufacturers have integrated Markov  

     techniques into their Risk Assessment SW Programs.  
 

It is this author’s opinion, that due to a lack of documentation written in a 

clear common language, knowledge of  Markov as applied to Reliability 

still remains a little “sketchy” within the engineering community. 

 

 




t

0

f pdf(x)dx P

A
p

p
li
e
d

 R
e
li
a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a
 2

0
1
0

 

Vito Faraci Jr. Slide Number: 5 Session # Track #  

  Acronyms  

 ARP – Aerospace Recommended Practice 

 Combo - Combinatorial 

 DE – Differential Equation 

 FAA – Federal Aviation Administration 

 FR – Failure Rate 

 FTA – Fault Tree Analysis 

 MA – Markov Analysis 

 Non-combo - Non-combinatorial 

 RBD – Reliability Block Diagram 

 ROF – Required Order Factor 

 SDE – Simultaneous Differential Equations 

 SSD – State Sequence Diagram 
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Agenda 

       Subject                   Sheet  #                                                                 Time (approx) 

 Introduction  3                                                                              2 min 

 Component Reliability vs. System Reliability  7                          5 min          

 Constant failure rate versus non-constant failure rate  9            5 min 

 System Reliability   13                                                                                        3 min 

 Quick review of FTA Basics    16                                                2 min 

 FTA vs. MA Advantages and disadvantages (Why Markov?) 19     7 min 

 Markov Analysis basics    26                                                         5 min 

  MA compared with FTA  32                                                        10 min 

 Past attempt to modify FTA to handle non-combo type problems   44              5 min 

 Review of various methods of solution of SDEs    53               1 min 

 Evidence of SDE Method Limitation    67                                                          3 min 

 Summary  72                                                                                                      2 min 

 Questions  77                                                                                                     10 min 
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Component Reliability vs. System Reliability 

Component Rel vs. System Rel 
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Component Rel vs. System Rel 

Reliability, sometimes referred to as Failure Analysis, is defined to be the 

probability that a component , black box, or system will perform its specified 

function successfully within a specified period of time.  
 

The subject of Reliability can be divided into two major sub-categories, each 

of which is a science in itself requiring university studies to treat each of 

them adequately.  

 

They are: 

a) Component Reliability  

                   and  

b)  System Reliability 

 




t

0

f pdf(x)dx P

A
p

p
li
e
d

 R
e
li
a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a
 2

0
1
0

 

Vito Faraci Jr. Slide Number: 9 Session # Track #  

 

Component Reliability is the science of measuring and calculating reliability 

of primary components such as transistors, resistors, capacitors, IC chips, ball 

bearings etc. It is the study of determining a component’s failure 

characteristics based on various stresses that it will be exposed to. Stresses 

like hours of operation, temperature, humidity, vibration, voltage, current, etc. 

This science relies very heavily on applied physics. The final output product 

of this study is a mathematical model of the individual component’s failure 

characteristic.  
 

Failure characteristic of any primary component will fall into one of two 

categories either constant failure rate or non-constant failure rate.  
 

A brief description of both categories is presented next.  

Component Reliability 
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Failure characteristic of a 

constant failure rate device 

 

probability of success  =  
 

probability of fail  = 
 

 

where e = 2.71828, 

 λ = constant failure rate,  

 t = time.  
 

                                           

                                       Transition Probabilities 
 

Note:                                                      

Percentage of failures are always the same 

(constant) for each time interval  t. 

100

90 10

1981

1

27.172.9

P

1-100

x0.9n

100x

0.9n

1 - P

Fail State

No Fail

t = 0

1

1

P

P

P

1 - P

1 - P

1 - P

t

t t 

t2 t 

t3 t 

tn t 

0.9  e P t  

P1 F 

Component Reliability cont. 

Constant Failure Rate 
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The following is an example of a probability of failure (Pf) equation of a 

non-constant failure rate device. In this case, the device exhibits a 

“normal” distribution of failure: 

where  

u = mean time to failure,  

s = standard deviation,  

hl = hours previously logged,   

t = time. 

x = dummy variable 
 

 

Note: 

The above equation is “non-integrable” which presents an additional challenge when 

calculating Pf. 

 

dx  e 
2

1
     P

t

0

2s 2

2hl)u(x

f 












 



s

Component Reliability cont. 

Non-Constant Failure Rate 
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Component Reliability cont. 

Constant FR vs. Non-Constant FR 

Comparison of a Constant and a Non-constant Failure Rate Device 

Probability of failure vs. Time graph  




t

0

f pdf(x)dx P

A
p

p
li
e
d

 R
e
li
a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a
 2

0
1
0

 

Vito Faraci Jr. Slide Number: 13 Session # Track #  

System Reliability is the science of measuring and/or calculating reliability 

of a system made up of two or more components. In other words creating a 

math model of the failure characteristic of the system. This is accomplished 

by deriving the failure characteristic (math model) of each individual 

component, and then mathematically integrating individual component 

failure characteristics based on the component inter-relationships operating 

in the system. This science obviously relies very heavily on applied 

mathematics.  

The rest of this presentation is devoted to the study of this subject. 

 

System Reliability  
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System Reliability cont. 

Simple System 

Mechanical device in series with an Electrical Device 
 

                    Pfm(t) = Pf (mech device)    Pfe(t) = Pf (elect device)   

                     

                            Pf (System)  =  Pfm (t) + Pfe (t) − Pfm (t) ∙ Pfe (t)   

 

t01.0
fe

t

0

2s2

2)100x(

fm e 1  (t)P        ,dxe
2s

1
  )t(P 







 

Major point of slide:   

When integrating devices with different failure characteristics, all is required is basic “and/or” 

logic. No need for Markov or any other special techniques.  

Mech ElectRBD 
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Constant & Non-constant FR Devices in Series 

Probability of failure vs. Time graph  

System Reliability cont. 

Simple System 
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Quick Review of FTA Basics 

Quick Review of FTA Basics 

(Very quick. FTA is a subject all by itself.) 
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Quick Review of FTA Basics cont. 

Or – Logic   

Assuming all probabilities of failure mutually exclusive, then 

 





n

1  i

i fP  fP

P
f1

P
f2

P
fi

P
fn

P
fa

P
fb

P
f
  =  P

fa
 + P

fb

P
f 
 =  P

f1
 + P

f2
 + . . . + P

fn

Pf  = Pfa + Pfb - Pfa · Pfb 
   (if not mutually exclusive) 

1 2 n

RBD – Series Configuration 
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Quick Review of FTA Basics cont. 

And – Logic   

Assuming all probabilities of failure independent, then 

 





n

1  i

i fP  fP

P
f
  =  P

fa
 . P

fb

P
f1

P
f2

P
fi

P
fn

P
fa

P
fb

P
f 
 =  P

f1
 . P

f2
 . . . P

fn

1

2

n

i

  RBD – Parallel Configuration 

Important notes:  

1) FTA logic is not limited to exponentials as shown on a previous slide. 

2) Not all reliability problems can be reduced to series or parallel models (logic). 
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FTA vs. MA   Advantages / Disadvantages 

FTA  vs. MA   Advantages / Disadvantages 
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   Fault Tree Advantages: 

 

 Acts as a visual tool which can be used to pinpoint system 
weaknesses. 

 

 Exhibits clear representation of logical processes that lead to a 
system or sub-system failure (clear qualitative representation of 
failure propagation). 

 

 Reveals relatively simple equations for Pf calculations yielding 
quantitative analyses that do not require high powered math. 

 

 Proves to be a very effective tool for the fault isolation process.  

 

 

 

 
         
 

FTA vs. MA   Advantages / Disadvantages 
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   Fault Tree Limitations: 

 

 Difficult to allow for transient & intermittent faults or standby 
systems with spares. 

 

 If a system has many failure conditions, separate fault trees may need 
to be constructed for each one. 

 

 Difficult to represent systems where failure rates or repair rates are 
state dependent (change between states). 

 
        From ARP 4761 Issue 1996-12 
 

FTA vs. MA   Advantages / Disadvantages cont. 
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The following is an excerpt from NASA Ref. Publication 1348: 
 

Traditionally, the reliability analysis of a complex system has been 

accomplished with combinatorial mathematics.  The standard fault-tree 

method of reliability analysis is based on such mathematics.  

Unfortunately, the fault-tree approach is somewhat limited and incapable 

of analyzing systems in which reconfiguration is possible. Basically, a 

fault tree can be used to model a system with: 

Only permanent faults (no transient or intermittent faults) 

No reconfiguration 

No time or sequence failure dependencies 

No state-dependent behavior (e.g., state-dependent failure rates) 

FTA vs. MA   Advantages / Disadvantages cont. 
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 MA does not have these limitations. 

 

 Sequence dependent events are included and handled naturally. 

 

 Covers a much wider range of system behaviors. 

 

    From ARP4761 Issue 1996-12 

 

Close examination of the above NASA and FAA excerpts reveals the 

answer to the “Why Markov” question. It has to do with combinatorial  

vs. non-combinatorial logic. 

 

 

FTA vs. MA   Advantages / Disadvantages cont. 
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 Combinatorial Logic 

 Two or more input states define one or more output states. Output 
states are related by defined rules that are independent of previous 
states.  

- Logic depends solely on combinations of inputs 

- Time is neither modeled or recognized 

- Outputs change when inputs change irrespective of time 

-    Output is a function of, and only of, the present input 

- Logic can be represented using And Gates & Or Gates (Fault Tree) 

 
 Non-combinatorial Logic (Example: Sequential Logic) 

 Logic of output(s) depends on combinations of present input states, 
and combinations of previous input states  

 
   In other words non-combinatorial logic has memory while combinatorial logic does not.

  

FTA vs. MA   Advantages / Disadvantages cont. 
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 Fault Tree Analysis (FTA) –Handles combinatorial type problems 

both qualitatively and quantitatively extremely well. However FTA 

has difficulty with non-combinatorial problems in both areas. 
 

 Markov Analysis (MA) – Handles non-combinatorial as well as 

combinatorial problems. However, not quite as intuitive as FTA, and 

usually requires higher power mathematics for quantitative analyses. 

 

 Why Markov? 

     Stated mathematically Markov handles non-combinatorial problems 

that FTA cannot. 

        

FTA vs. MA   Advantages / Disadvantages cont. 
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Markov Analysis Basics 

Markov Analysis Basics 
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Markov Analysis Basics 

     If a system or component can be in one of two states (i.e. failed, non-

failed), and if we can define the probabilities  associated with these 

states on a discrete or continuous basis, the probability of being in one 

or other at a future time can be evaluated using a state-time analysis. 

In reliability and availability analysis, failure probability and the 

probability of being returned to an available state are the variables of 

interest. The best known state-space technique is Markov Analysis.  
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 State Diagram represents various system states 
 

 Transition rate is function 

     of failure or repair rate 
 

 States must be finite in 

     number 
 

 States are mutually exclusive 
 

 The sum of the probabilities 

     must equal 1 

 

  Mutually Exclusive – System can never be in any more than one state at any given time 

 

P
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Markov Analysis Basics cont. 
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Markov Analysis Basics cont.   
Math Modeling (Determining SDE) 

The following is a typical state taken from a State Diagram with n input transitions with 

constant failure rates Ij, and m output transitions with constant failure rates Ok. 

 

to other states from other states 

Pi  = probability of being in state i 

Unfortunately Pi cannot be calculated immediately. Calculation of Pi requires the 

solution of a set of simultaneous differential equations (SDE).  

However, determination of the SDE is really quite simple once an accurate State 

Diagram of the system or sub-system is constructed.  

P
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Each state has a corresponding DE. The DE corresponding to a typical state is:  

 

P(i) 

m

1 k 

kOP(j)

n

1  j

jI  
dt

dP(i)























 

Note: Transitions into a state result in positive terms in the DE, while 

transitions leaving a state yield negative terms. 

For the sake of simplifying notation let Pi = P(i). 

Markov Analysis Basics cont.   
Math Modeling (Determining SDE)  cont. 
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Transitions into a state result in positive terms in the DE, while transitions leaving 

a state yield negative terms. 

Markov Analysis Basics cont.   
Math Modeling (Determining SDE)   

Example : Two devices in Parallel  
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Markov Analysis Compared with FTA 

Markov Analysis Compared with FTA 
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Combinatorial 

 Type  

Problems 

Markov Analysis Compared with FTA 
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As mentioned before Markov handles combinatorial as well as non-

combinatorial problems.  

Although there is no need of Markov for solving combinatorial type 

problems, (FTA handles them well enough) the next few slides will 

demonstrate several examples for the sake of illustration and 

comparison. 

 

 

Note:  

The following comparison examples are limited to “constant failure rate” type 

problems. Solutions to “non-constant failure rate” type problems require different 

math techniques.  

 

Markov Analysis Compared with FTA  
Combinatorial Type Problems 
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Markov Analysis Compared with FTA  
2 Components in Series  (Combo Type) 

Two black boxes start operation at the same time. Box 1 has failure rate a and Box 2 
has failure rate b. Successful system operation requires that both boxes be working.  

Find Pf  =  Probability of System Failure. 

 

 

                      State Diagram                                                      FTA Approach 

                                                                                                      (and/or logic) 

 

   

 

 

 

 

 

  

 

Note: P(n) = Probability of State (n) 
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P
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dP(2)/dt  =  (a+b)P(1)   

Pf = P(2) = 1– e–(a+b)t 

Pf = Pa + Pb − Pa ∙ Pb    

Pf = 1– e–(a+b)t 
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Three black boxes start operation at the same time. Boxes 1, 2, and 3  have failure 

rates a, b, and c respectively. Successful system operation requires that all three boxes 

be working. Find Pf  the Probability of System Failure. 
  

                       State Diagram                                                               FTA Approach 

                                                                                                                (and/or logic) 

                                    

(1) (2)
a + b + c

Full Up Sy stem Fail

P
f

1-e-at

1-e-bt

1-e-ct

Markov Analysis Compared with FTA  
3 Components in Series (Combo Type) 

     dP(2)/dt  =  (a+b+c)∙P(1)   

  Pf = P(2) = 1– e–(a+b+c)t 

Pf = Pa + Pb + Pc − Pa ∙ Pb − Pa ∙ Pc − Pb ∙ Pc + Pa ∙ Pb ∙ Pc    

  Pf = 1– e–(a+b+c)t 
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Markov Analysis Compared with FTA  
2 Components Active Redundant (Parallel) (Combo Type) 

Two black boxes start operation at the same time. Box 1 has failure rate a and 

Box 2 has failure rate b. Successful system operation requires that Box 1 or Box 2 

or both be working. Find Pf  the Probability of System Failure. 

 

   

                              State Diagram                                                           FTA Approach 

                                                                                                                   (and/or logic) 
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P
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1-e-bt

Pf = (1– e–at)(1– e–bt)       dP(4)/dt  =  bP(2) + aP(3)  

  Pf = P(4) = (1– e–at)(1– e–bt) 

Note:  

Failure rates are not effected by state changes.  
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Three black boxes start operation at the same time. Box 1, 2, and 3 have failure rate 

a, b, and c respectively. Successful system operation requires that Box 1, 2, or 3 be 

working. Find Pf  the Probability of System Failure. 

 
  

                                      State Diagram                                                               FTA Approach 

                                                                                                                              (and/or logic) 
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Markov Analysis Compared with FTA  
3 Components Active Redundant (Parallel) (Combo Type) 

       dP(8)/dt  =  cP(5) + bP(6)  + aP(7)   

 Pf = P(8) = (1– e–at)(1– e–bt) (1– e–ct) 
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Non-combinatorial 

 Type  

Problems 

Markov Analysis Compared with FTA cont. 
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Solutions of non-combinatorial problems require different techniques 

other than traditional combinatorial logic such as that found in FTAs. 

In particular one of the simplest non-combinatorial type problem that 

has intrigued mathematicians is the classic “Standby Problem”.  

 

 

 

Markov Analysis Compared with FTA  
Non-combinatorial Type Problems 
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        State Diagram                                                          FTA    

                                                                                             ?                             

     

Box A has failure rate a and Box B has failure rate b. Box A is turned on while Box 

B remains powered off in standby mode. Immediately upon detection of Box A 

failure, Box B is turned on. Calculate the probability that both boxes are failed. 

 

Markov Analysis Compared with FTA  
Standby Problem (Non-Combo Type) 
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Two components are in operation. Find the probability that both Boxes A and B fail 

and that Box A fails before Box B.  Also find the probability that both Boxes fail 

and that Box B fails before Box A. 

          State Diagram                                              FTA   

                                                                                 ? 
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Markov Analysis Compared with FTA  
2 Components Active Redundant with ROF (Non-Combo Type) 
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A Black Box has failure rate a and a repair rate b. Upon detection of a failure, the 

Box goes into a repair process and put back on line. Calculate the probability that the 

Box will be available. 

 

                 State Diagram                                                FTA   

                                                                                          ? 
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Markov Analysis Compared with FTA  
Component with Repair (Non-Combo Type) 
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Past Attempt to Modify FTA 

Past Attempt to Modify FTA to Handle      

Non-combinatorial Type Problems  
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FTA Required Order Factors  

• Establish any relevant required order factors (ROF) 

– An AND-gate in a fault tree implies no specific order of the faults present.  

In some cases, this may be unrealistic. 

• An example is a failure combination where a monitor is used to detect failures 

of functional circuitry that can cause the top level event. 

• If the monitor fails first, the failure may remain latent until the monitor is 

checked. 

• If the function c circuitry fails first, the top level event does not occur because 

the monitor annunciates the failure. 

A 

B before C 

B C 

(Enable) Event A will occur only if 

event B occurs and 

subsequently event C 

occurs. 

From ARP 4761 Issue 1996-12 
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FTA Required Order Factors cont. 

Rule of Thumb: 

 When dealing with failure order dependent events, a factor may be 
incorporated into the fault tree to make the calculated probabilities less 
conservative.  This factor is known as the Required Order Factor 
(ROF) or the Sequencing Factor. 

 For t < 0.1 the probability of the two events occurring in either order 
(given that they both fail) is approximately ½ of the total probability 
and therefore the ROF for each order is ½. 

 In general, if there are n events in an AND-gate there are n! possible 
orders in which they could fail.  If only k of those possible orders lead 
to the top event, then ROF = k/n! 

 This approximation is only valid for events with the same exposure 
time or events with different exposure times where (1 + 2) T(Max) is 
less than 0.2.  

 For all other cases, ROF should be calculated. 

 

 

From ARP 4761 Issue 1996-12 
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                    State Diagram                                  FTA using ROF 

     

Box A has failure rate a and Box B has failure rate b. Box A is turned on while Box 

B remains powered off in standby mode. Immediately upon detection of Box A 

failure, Box B is turned on. Calculate the probability that both boxes are failed. 

 

x      y

1/2

P
f

    x =  (1 – e – at ),  y =  (1 – e – bt ) 

Pf  =  ½xy =  ½ (1 – e – at )(1 – e – bt ) 

 

Markov Analysis Compared with FTA  
Standby Problem (Non-Combo Type) 
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Markov Analysis Compared with FTA  
Graph of Standby Problem (Non-Combo Type) 

Pf vs. Time          (0 to 10 hours)                   (0 to 5000 hours) 
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Two components are in operation. Find the probability that both Boxes A and B fail 

and that Box A fails before Box B.  Also find the probability that both Boxes fail 

and that Box B fails before Box A. 

                  State Diagram                                       FTA using ROF 
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Markov Analysis Compared with FTA  
2 Components Active Redundant with ROF (Non-Combo Type) 
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Markov Analysis Compared with FTA  
Graph of ROF Problem (Non-Combo Type) 

Pf vs. Time          (0 to 10 hours)                            (0 to 5000 hours) 
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Markov Analysis Compared with FTA  
2 Components Active Redundant (Parallel) (Non-Combo Type) 

Two black boxes start operation at the same time. Box A has initial failure rate a, and then 

has failure rate a’  when Box B fails due to increase stress.  Box B has initial failure rate 

b, and then has failure rate b’ when Box A fails. Successful system operation requires that 

Box A or Box B or both be working.  

Find Pf  the Probability of System Failure. 

 

   

 State Diagram                                                        Equations 
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Important note:  

Whenever failure rates change from one state to another, the problem becomes  non-

combinatorial. 
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Markov Analysis Compared with FTA  
2 Components Active Redundant (Parallel) (Combo Type) 

Two black boxes start operation at the same time. Box A has failure rate a, and Box B has 

initial failure rate b. Successful system operation requires that Box A or Box B or both be 

working.  

Find Pf  the Probability of System Failure. 

 

   

 State Diagram                                                           Equations 
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Notes:  

1) Notice the tell-tale characteristic of combinatorial equations in the solution set. 

2) Compare this slide to the previous one where failure rates changed. 
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Review of Various Methods of Solution of SDEs 

Review of Various Methods of Solution of SDEs 
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  bP  
dt

dP
   ,bP aP  

dt

dP
   ,aP  

dt

dP
2

3
21

2
1

1

What follows is a method using Laplace Transforms for solving for P1, P2, and P3 

based on the 3 SDEs obtained from the Markov Diagram:  

          (1)                PaL 1PsL    PaL  )0(PPsL    aPL  
dt

dP
L 111111

1 








        







  PbLPaL  )0(PPsL   bP aPL  

dt

dP
L 212221

2

      (2)                                                                                          PbLPaL  PsL 212 

          (3)                         PbL PsL    PbL  )0(PPsL    bPL  
dt

dP
L 232332

3 








    (4)                                   
b)a)(s(s

a
 PL   (2) & (1) and   

as

1
 PL    (1) 21







Note: P1(0) = 1 and P2(0) = 0 assumed. 

Solution to “Standby” using Laplace  
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Note: The third DE in Line (3) could be used to solve for P3. However since P1 and P2  

are known, use the fact that P1 + P2 + P3 = 1. This approach is faster and simpler.     

Solution to “Standby” using Laplace cont. 
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C  +dt    e g(t) =e Pthen  

   P f(t )  g(t)
dt

dPi
  and  t ,of functions are g(t) and f(t ) If

)dtf(t)dtf(t
i

i







Solution to “Standby” using a Formula  

at
111

at
11

dta
11

1 eC   = PC   =e PC   =e Pa  f(t) and 0  g(t)    aP  
dt

dP  

2
bt

1
bt

2121
2 C  +dt   eaP =e Pb  f(t) and aP  g(t)   bP aP  

dt

dP
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
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   C e

ab
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    C +  dt ea =C +dt   eea = 2

a)t(b
2

a)t(b
2

btat

Where C1 = probability of P1 at t = 0    Assume C1 = P1(0) = 1    P1 = e–at 

 

Many Markov (SDE) problems can be solved using the following formula: 

C = arbitrary constant 
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Again since P1 and P2 are known, use the fact that P1 + P2 + P3 = 1.  

Solution to “Standby” using a Formula cont.  
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A process taken from Calculus called “Convolution” can also be used to 

calculate Pf  of Standby Systems.  
 

Definition:  

Let A(t) and B(t) be probabilities of failure of two devices, with device B in 

Standby of device A, and let a(t) be the derivative of A(t).  
 

The Convolution of  A and B = Conv(t) =  

t

0

fP  a(x)dx  x)B(t

Conv(t) turns out to be the Standby System’s Probability of failure Pf. 

 

 

Solution to “Standby” using Convolution 
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Solution to “Standby” using Convolution cont.  

Let A(x) = 1e–ax, and B(x) = 1e–bx be the probabilities of failure of 

devices A and B. Then A’(x) = a(x) = ae–ax, and B(tx) = 1e–b(tx) since 

a and b are constant failure rates of devices A and B respectively   
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The Convolution Integral can be solved using  Laplace and Inverse 

Laplace Transforms. Simply stated: 

     )atL(ae)bteL(1 1-L L[a(t)]L[B(t)] 1-L and

 L[a(t)]L[B(t)] 1L  F(t) then 
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Solution to “Standby” using Convolution cont.  
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Solution to “Standby” using Matrix Algebra  

Discrete "Standby" Probability Equation (derived from Transition Matrix) 

With respect to Standby TM shown on next slide,  

a = probability of transitioning from State N to State N (probability of remaining in 

State N) 

1−a = probability of transitioning from State N to State A  

1−b = probability of transitioning from State A to State B  

b = probability of transitioning from State A to State A (probability of remaining in 

State A) 

1 = probability of transitioning from State B to State B (probability of remaining in 

State B) 

  

Let  (Nn  An  Bn ) be a vector representing the probabilities of being in States N, A, 

and B at time n∆t. Then the three probabilities at time (n+1)∆t, can be represented by 

the vector (Nn+1  An+1  Bn+1 ) using simple matrix algebra as shown on next slide. 
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N A B
1-a 1-b

a b






















1       0      0 
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0     a1    a 

    T M

Solution to “Standby” using Matrix Algebra  cont.  
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N0

a

N1 A1

A2N2 B2

a

1 - a

1 - b

b

a

A3N3 B3

1 - b

b

1 - a

1 - a

a

AnNn Bn

1 - b

b

1 - a

1

1

A Failed

B Failed

No Fails

t = 0

t

t t 

t2 t 

t3 t 

tn t 

Solution to “Standby” using SSD  

Notes:  
State N = Box A operating and Box B in 

standby state,  

 

State A  = Box A Failed and Box B operating 

state,  

 

State B = Both Boxes A and B Failed state. 

 

t = fixed time interval, n = time increment 

multiplier,  

 

Nn = Probability of being in State N at time nt 

(no failures) 

 

An = Probability of being in State A at time nt 

(A failed) 

 

Bn = Probability of being in State B at time nt 

(A and B failed) 
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Let Ni = Probability of being in State Ni, Ai = Probability of being in State Ai, 

and Bi = Probability of being in State Bi at time it. 

Referring to the above Standby SSD, a = probability of Box A being 

operational and b = probability of Box B being operational for elapsed time ∆t.  

Solution to “Standby” using SSD cont.  
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Solution to “Standby” using Arithmetic 

Another approach uses a spreadsheet and arithmetic derived from the SDE. 

 

 

Example: dt  =  delta t  = 0.5,  a = 0.3,  b = 0.4 

P1- aP1dt P2+(aP1- bP2)dt P3+bP2dt
t P1 = P(State1) P2 = P(State2) P3 = P(State3)

0 1 0 0

dt 0.85 0.15 0

2dt 0.7225 0.2475 0.03

3dt 0.614125 0.306375 0.0795

4dt 0.52200625 0.33721875 0.140775

5dt 0.443705313 0.348075938 0.20821875

6dt 0.377149516 0.345016547 0.277833938

7dt 0.320577088 0.332585665 0.346837247

8dt 0.272490525 0.314155095 0.41335438

9dt 0.231616946 0.292197655 0.476185399

10dt 0.196874404 0.268500666 0.53462493

11dt 0.167343244 0.244331693 0.588325063

  bP  
dt

dP
   ,bP aP  

dt

dP
   ,aP  

dt

dP
2

3
21

2
1

1
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Solution to “Standby” using Arithmetic cont. 
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Graph output from spreadsheet. 

P1 P3 

P2 
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Evidence of SDE Method Limitation 

Evidence of a Limitation of  

Simultaneous Differential Equation Method  
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Evidence of SDE Method Limitation cont. 

SDE method is unreliable with respect to non-constant failure rate problems. 

 Example: Standby problem with 2 identical devices. (hypothetical FR = a∙t) 
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Shaded area under P1 curve represents MTTF of Device 1 

Evidence of SDE Method Limitation cont. 




t

0

f pdf(x)dx P

A
p

p
li
e
d

 R
e
li
a
b

il
it

y
 S

y
m

p
o

s
iu

m
, 

N
o

rt
h

 A
m

e
ri

c
a
 2

0
1
0

 

Vito Faraci Jr. Slide Number: 70 Session # Track #  

Shaded area under P2 curve represents MTTF of Device 2 

MTTF2 = ½ MTTF1 when calculated using SDE Method (incorrect) 

Evidence of SDE Method Limitation cont. 
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Shaded area under P2 curve represents MTTF of Device 2 

MTTF2 = MTTF1 using Convolution (correct result) 

Evidence of SDE Method Limitation cont. 
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Summary  

Summary  
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Summary  

Facts to keep in mind: 

 FTA exhibits a clear representation of any combinatorial logic process, and 

capable of handling both constant and non-constant failure rates.  

 Integration of non-constant with constant failure rate items may require higher 

math, but has nothing to do with a system’s combinatorial logic.  

 MA is a supplement to, and not a replacement for FTA.   

 FTA cannot exhibit non-combinatorial logic processes, although FTAs have 

been used to calculate approximations. 

 FTA approximations can be either more or less conservative than exact solution. 

 With respect to Reliability, Markov can be thought of as a buzz word for various 

methodologies used for solving non-combinatorial logic problems. 

 Markov techniques can also solve combinatorial problems. (Not recommended) 

 State diagrams are used to represent non-combinatorial logic. 

 SDE can be very easily determined after the state diagram is constructed. 

 Markov requires solutions to a set of  n SDE where n = number of states. 

 With respect to non-combo problems, Markov adds qualitative and quantitative 

accuracy over FTA, but requires more work. 
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Summary cont. 

Markov Approach (for systems exhibiting non-combinatorial logic): 

 Create a system RBD and partition combinatorial and non-combinatorial sections. 

       (may be challenging – Differences between Combo and Non-combo problems can be very subtle) 

 Use and/or logic (standard FTA methods) for all combinatorial sections. 

 Create state diagrams for all non-combinatorial sections. 

 Determine set of SDE from state diagrams of each section. 

 Find solution set to SDE to determine probability of states.  

      (may be challenging – Solutions to SDE is a subject of its own) 

 Integrate solutions of all sections and determine probability of all undesirable 

states (events). 
 

Markov Limitations 

 The Markov SDE approach presented in this paper is unreliable when failure rates 

are non-constant. Math modeling non-combinatorial logic of non-constant failure 

rate items will require other techniques. 

 Markov approach can become difficult when a large number of states are involved. 
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Where to Get More Information 

 SAE ARP 4761 Issue 1996-12 

 Engineering Reliability  Fundamentals & Applications – R. Ramakumar 

 System Reliability Theory – A. Hoyland & M. Rausand 

 Probabilistic Risk Assessment & Management for Engineers & Scientists 

      – H. Kumamoto & E. Henley 

 Modeling for Reliability Analysis – Jan Pukite & Paul Pukite 

 Mil-Hdbk 338A – Electronic Reliability Design Handbook 

 Mil-Std 756B – Reliability Modeling and Prediction 
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Contact Information 

 

vfaraci02@gmail.com 
 

631-977-2597 
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Questions 

 

 

Thank you for your attention. 

 

Do you have any questions? 


